CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal.
Annu Rev Biochem. 2010;79:655-81. doi: 10.1146/annurev-biochem-091208-085603.
Cellulosomes can be described as one of nature's most elaborate and highly efficient nanomachines. These cell bound multienzyme complexes orchestrate the deconstruction of cellulose and hemicellulose, two of the most abundant polymers on Earth, and thus play a major role in carbon turnover. Integration of cellulosomal components occurs via highly ordered protein:protein interactions between cohesins and dockerins, whose specificity allows the incorporation of cellulases and hemicellulases onto a molecular scaffold. Cellulosome assembly promotes the exploitation of enzyme synergism because of spatial proximity and enzyme-substrate targeting. Recent structural and functional studies have revealed how cohesin-dockerin interactions mediate both cellulosome assembly and cell-surface attachment, while retaining the spatial flexibility required to optimize the catalytic synergy within the enzyme complex. These emerging advances in our knowledge of cellulosome function are reviewed here.
可以将细胞黏合酶形容为自然界最精巧和高效的纳米机器之一。这些细胞结合的多酶复合物协调纤维素和半纤维素的解构,而这两种物质是地球上最丰富的聚合物之一,因此在碳循环中起着重要作用。细胞黏合酶组件的整合通过黏附蛋白和衔接蛋白之间高度有序的蛋白-蛋白相互作用发生,其特异性允许纤维素酶和半纤维素酶整合到分子支架上。细胞黏合酶的组装促进了酶协同作用的利用,因为它具有空间接近性和酶-底物靶向性。最近的结构和功能研究揭示了黏附蛋白-衔接蛋白相互作用如何介导细胞黏合酶的组装和细胞表面附着,同时保留了所需的空间灵活性,以优化酶复合物内的催化协同作用。本文综述了我们对细胞黏合酶功能的这些新认识。