U.S. Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, Maryland 20708, USA
Ecology. 2012 Apr;93(4):913-20. doi: 10.1890/11-1538.1.
Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last 20 years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected-value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We have also implemented these models in program MARK. This general framework could also be used by practitioners to consider constrained models of particular interest, or to model the relationship between within-primary-period parameters (e.g., state structure) and between-primary-period parameters (e.g., state transition probabilities).
在过去的 20 年中,多状态标记重捕模型的开发和应用已经变得非常普遍,这些模型在面对不完全检测的情况下提供了马尔可夫过程参数的估计。最近,估计隐藏马尔可夫模型的参数引起了人们的关注,在隐藏马尔可夫模型中,即使个体被检测到,其状态也可能不确定。先前的工作表明,忽略状态不确定性会使生存和状态转移概率的估计产生偏差,从而降低检测效果的能力。为了调整状态不确定性,已经包括了特殊情况和针对每个感兴趣时期的单个样本的一般框架。我们提供了一种灵活的框架,可以在多状态模型中调整状态不确定性,同时利用每个感兴趣时期的多个采样机会来提高精度并消除参数冗余。这些模型还为每个主要时期提供了状态结构的直接估计,即使只有一个采样机会也是如此。我们将我们的模型应用于期望值数据,以及佛罗里达海牛研究的数据,以提供由于二次捕获机会而提高精度的示例。我们还在程序 MARK 中实现了这些模型。该通用框架也可由从业者用于考虑特定感兴趣的约束模型,或用于建模主要时期内参数(例如,状态结构)与主要时期之间参数(例如,状态转移概率)之间的关系。