Suppr超能文献

动力学可及的多亚基蛋白中气体扩散的有效模拟:T 态脱氧血红蛋白中的 O2 途径和逃逸途径。

Effective simulations of gas diffusion through kinetically accessible tunnels in multisubunit proteins: O2 pathways and escape routes in T-state deoxyhemoglobin.

机构信息

Department of Chemistry and Biochemistry and Centre for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6.

出版信息

J Am Chem Soc. 2012 Jul 11;134(27):11177-84. doi: 10.1021/ja300903c. Epub 2012 Jun 26.

Abstract

The diffusion of small gases to special binding sites within polypeptide matrices pivotally defines the biochemical specificity and reactivity of proteins. We investigate here explicit O(2) diffusion in adult human hemoglobin (HbA) as a case study employing the recently developed temperature-controlled locally enhanced sampling (TLES) method and vary the parameters to greatly increase the simulation efficiency. The method is carefully validated against standard molecular dynamics (MD) simulations and available experimental structural and kinetic data on ligand diffusion in T-state deoxyHbA. The methodology provides a viable alternative approach to traditional MD simulations and/or potential of mean force calculations for: (i) characterizing kinetically accessible diffusion tunnels and escape routes for light ligands in porous proteins; (ii) very large systems when realistic simulations require the inclusion of multiple subunits of a protein; and (iii) proteins that access short-lived conformations relative to the simulation time. In the case of T-state deoxyHbA, we find distinct ligand diffusion tunnels consistent with the experimentally observed disparate Xe cavities in the α- and β-subunits. We identify two distal barriers including the distal histidine (E7) that control access to the heme. The multiple escape routes uncovered by our simulations call for a review of the current popular hypothesis on ligand escape from hemoglobin. Larger deviations from the crystal structure during simulated diffusion in isolated α- and β-subunits highlight the dampening effects of subunit interactions and the importance of including all subunits of multisubunit proteins to map realistic kinetically accessible diffusion tunnels and escape routes.

摘要

小分子气体向多肽基质中特殊结合位点的扩散,对蛋白质的生化特异性和反应性起着关键作用。在这里,我们以成人血红蛋白(HbA)为例,研究了 O(2)的扩散,采用了最近开发的温度控制局部增强采样(TLES)方法,并改变参数以大大提高模拟效率。该方法经过精心验证,与标准分子动力学(MD)模拟和 T 态脱氧 HbA 中配体扩散的可用实验结构和动力学数据相吻合。该方法为传统 MD 模拟和/或平均力势计算提供了一种可行的替代方法,适用于:(i)描述多孔蛋白质中轻配体的动力学可及扩散隧道和逃逸途径;(ii)对于非常大的系统,当实际模拟需要包含蛋白质的多个亚基时;(iii)与模拟时间相比,蛋白质能够进入短寿命构象的情况。对于 T 态脱氧 HbA,我们发现了与实验观察到的 α-和 β-亚基中不同 Xe 腔一致的独特配体扩散隧道。我们确定了两个远端障碍,包括控制血红素进入的远端组氨酸(E7)。我们的模拟揭示了多种逃逸途径,这需要重新审视当前关于血红蛋白中配体逃逸的流行假说。在孤立的 α-和 β-亚基中模拟扩散时与晶体结构的较大偏差突出了亚基相互作用的阻尼效应,以及包括多亚基蛋白质的所有亚基以映射现实的动力学可及扩散隧道和逃逸途径的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验