Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Brazil.
Biochemistry. 2012 Jul 10;51(27):5402-13. doi: 10.1021/bi300440e. Epub 2012 Jun 25.
A misfolded form of the prion protein (PrP) is the primary culprit in mammalian prion diseases. It has been shown that nucleic acids catalyze the misfolding of cellular PrP into a scrapie-like conformer. It has also been observed that the interaction of PrP with nucleic acids is nonspecific and that the complex can be toxic to cultured cells. No direct correlation has yet been drawn between changes in PrP structure and toxicity due to nucleic acid binding. Here we asked whether different aggregation, stability, and toxicity effects are detected when nonrelated DNA sequences interact with recombinant PrP. Using spectroscopic techniques to analyze PrP tertiary and secondary structure and cellular assays to assess toxicity, we found that rPrP-DNA interactions lead to different aggregated species, depending on the sequence and size of the oligonucleotide tested. A 21-mer DNA sequence (D67) induced higher levels of aggregation and also dissimilar structural changes in rPrP, compared to binding to oligonucleotides with the same length and different nucleotide sequences or different GC contents. The rPrP-D67 complex induced significant cell dysfunction, which appears to be correlated with the biophysical properties of the complex. Although sequence specificity is not apparent for PrP-nucleic acid interactions, we believe that particular nucleic acid patterns, possibly related to GC content, oligonucleotide length, and structure, govern PrP recognition. Understanding the structural and cellular effects observed for PrP-nucleic acid complexes may shed light on the still mysterious pathology of the prion protein.
朊病毒蛋白(PrP)的错误折叠形式是哺乳动物朊病毒病的主要罪魁祸首。已经表明,核酸可以催化细胞 PrP 错误折叠成类瘙痒症构象。还观察到 PrP 与核酸的相互作用是非特异性的,并且该复合物可能对培养细胞有毒。由于核酸结合,尚未在 PrP 结构变化与毒性之间建立直接相关性。在这里,我们询问当非相关 DNA 序列与重组 PrP 相互作用时,是否会检测到不同的聚集、稳定性和毒性效应。我们使用光谱技术分析 PrP 的三级和二级结构,并使用细胞测定法评估毒性,发现 rPrP-DNA 相互作用导致不同的聚集物,这取决于所测试的寡核苷酸的序列和大小。与与具有相同长度和不同核苷酸序列或不同 GC 含量的寡核苷酸结合相比,21 个碱基对的 DNA 序列(D67)诱导更高水平的聚集,并且 rPrP 也发生了不同的结构变化。rPrP-D67 复合物诱导显著的细胞功能障碍,这似乎与复合物的生物物理特性相关。尽管 PrP-核酸相互作用没有明显的序列特异性,但我们认为特定的核酸模式,可能与 GC 含量、寡核苷酸长度和结构有关,控制 PrP 的识别。了解观察到的 PrP-核酸复合物的结构和细胞效应可能有助于阐明朊病毒蛋白仍然神秘的病理学。