Suppr超能文献

Affymetrix SNP 阵列的杂交和扩增率校正。

Hybridization and amplification rate correction for affymetrix SNP arrays.

机构信息

Center for Theoretical Biology, Peking University, Beijing 100871, People's Republic of China.

出版信息

BMC Med Genomics. 2012 Jun 12;5:24. doi: 10.1186/1755-8794-5-24.

Abstract

BACKGROUND

Copy number variation (CNV) is essential to understand the pathology of many complex diseases at the DNA level. Affymetrix SNP arrays, which are widely used for CNV studies, significantly depend on accurate copy number (CN) estimation. Nevertheless, CN estimation may be biased by several factors, including cross-hybridization and training sample batch, as well as genomic waves of intensities induced by sequence-dependent hybridization rate and amplification efficiency. Since many available algorithms only address one or two of the three factors, a high false discovery rate (FDR) often results when identifying CNV. Therefore, we have developed a new CNV detection pipeline which is based on hybridization and amplification rate correction (CNVhac).

METHODS

CNVhac first estimates the allelic concentrations (ACs) of target sequences by using the sample independent parameters trained through physicochemical hybridization law. Then the raw CN is estimated by taking the ratio of AC to the corresponding average AC from a reference sample set for one specific site. Finally, a hidden Markov model (HMM) segmentation process is implemented to detect CNV regions.

RESULTS

Based on public HapMap data, the results show that CNVhac effectively smoothes the genomic waves and facilitates more accurate raw CN estimates compared to other methods. Moreover, CNVhac alleviates, to a certain extent, the sample dependence of inference and makes CNV calling with appreciable low FDRs.

CONCLUSION

CNVhac is an effective approach to address the common difficulties in SNP array analysis, and the working principles of CNVhac can be easily extended to other platforms.

摘要

背景

拷贝数变异(CNV)对于理解许多复杂疾病的 DNA 水平的病理学至关重要。Affymetrix SNP 阵列广泛用于 CNV 研究,其对准确的拷贝数(CN)估计有很大的依赖性。然而,CN 估计可能会受到多种因素的影响,包括交叉杂交和训练样本批次,以及序列依赖性杂交率和扩增效率引起的基因组强度波动。由于许多可用的算法仅解决三个因素中的一个或两个因素,因此在识别 CNV 时通常会导致高假发现率(FDR)。因此,我们开发了一种新的 CNV 检测管道,该管道基于杂交和扩增率校正(CNVhac)。

方法

CNVhac 首先通过使用通过物理化学杂交律训练的样本独立参数来估计目标序列的等位基因浓度(AC)。然后,通过将 AC 与参考样本集中特定位置的相应平均 AC 的比值来估计原始 CN。最后,实施隐马尔可夫模型(HMM)分割过程来检测 CNV 区域。

结果

基于公共 HapMap 数据,结果表明,与其他方法相比,CNVhac 有效地平滑了基因组波动,并且更准确地估计了原始 CN。此外,CNVhac 在一定程度上减轻了推断的样本依赖性,并使 CNV 调用具有可察觉的低 FDR。

结论

CNVhac 是解决 SNP 阵列分析中常见困难的有效方法,并且 CNVhac 的工作原理可以很容易地扩展到其他平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec0a/3428662/47fef91b60fb/1755-8794-5-24-1.jpg

相似文献

1
Hybridization and amplification rate correction for affymetrix SNP arrays.
BMC Med Genomics. 2012 Jun 12;5:24. doi: 10.1186/1755-8794-5-24.
2
A remark on copy number variation detection methods.
PLoS One. 2018 Apr 27;13(4):e0196226. doi: 10.1371/journal.pone.0196226. eCollection 2018.
4
Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms.
PLoS One. 2011;6(11):e27859. doi: 10.1371/journal.pone.0027859. Epub 2011 Nov 30.
5
Hybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation.
Nucleic Acids Res. 2009 Sep;37(17):e117. doi: 10.1093/nar/gkp559. Epub 2009 Jul 7.
6
cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate.
Nucleic Acids Res. 2011 Jul;39(12):e79. doi: 10.1093/nar/gkr197. Epub 2011 Apr 12.
7
Estimation and assessment of raw copy numbers at the single locus level.
Bioinformatics. 2008 Mar 15;24(6):759-67. doi: 10.1093/bioinformatics/btn016. Epub 2008 Jan 19.
8
Optimizing copy number variation analysis using genome-wide short sequence oligonucleotide arrays.
Nucleic Acids Res. 2010 Jun;38(10):3275-86. doi: 10.1093/nar/gkq073. Epub 2010 Feb 15.
10
Fast detection of de novo copy number variants from SNP arrays for case-parent trios.
BMC Bioinformatics. 2012 Dec 12;13:330. doi: 10.1186/1471-2105-13-330.

引用本文的文献

1
A remark on copy number variation detection methods.
PLoS One. 2018 Apr 27;13(4):e0196226. doi: 10.1371/journal.pone.0196226. eCollection 2018.
3
Use of autocorrelation scanning in DNA copy number analysis.
Bioinformatics. 2013 Nov 1;29(21):2678-82. doi: 10.1093/bioinformatics/btt479. Epub 2013 Sep 16.

本文引用的文献

1
CNVs: harbingers of a rare variant revolution in psychiatric genetics.
Cell. 2012 Mar 16;148(6):1223-41. doi: 10.1016/j.cell.2012.02.039.
3
High frequencies of de novo CNVs in bipolar disorder and schizophrenia.
Neuron. 2011 Dec 22;72(6):951-63. doi: 10.1016/j.neuron.2011.11.007.
4
De novo CNVs in bipolar disorder: recurrent themes or new directions?
Neuron. 2011 Dec 22;72(6):885-7. doi: 10.1016/j.neuron.2011.12.008.
7
cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate.
Nucleic Acids Res. 2011 Jul;39(12):e79. doi: 10.1093/nar/gkr197. Epub 2011 Apr 12.
8
Genome structural variation discovery and genotyping.
Nat Rev Genet. 2011 May;12(5):363-76. doi: 10.1038/nrg2958. Epub 2011 Mar 1.
9
Accuracy of CNV Detection from GWAS Data.
PLoS One. 2011 Jan 13;6(1):e14511. doi: 10.1371/journal.pone.0014511.
10
Diversity of human copy number variation and multicopy genes.
Science. 2010 Oct 29;330(6004):641-6. doi: 10.1126/science.1197005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验