School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, United States.
ACS Nano. 2012 Jul 24;6(7):5972-9. doi: 10.1021/nn300874w. Epub 2012 Jul 13.
We offer a comprehensive theory of pH response of a coupled ISFET sensor to show that the maximum achievable response is given by ΔV/ΔpH = 59 mV/pH × α, where 59 mV/pH is the intrinsic Nernst response and α an amplification factor that depends on the geometrical and electrical properties of the sensor and transducer nodes. While the intrinsic Nernst response of an electrolyte/site-binding interface is fundamental and immutable, we show that by using channels of different materials, areas, and bias conditions, the extrinsic sensor response can be increased dramatically beyond the Nernst limit. We validate the theory by measuring the pH response of a Si nanowire-nanoplate transistor pair that achieves >10 V/pH response and show the potential of the scheme to achieve (asymptotically) the theoretical lower limit of signal-to-noise ratio for a given configuration. We suggest the possibility of an even larger pH response based on recent trends in heterogeneous integration on the Si platform.
我们提供了一个全面的理论来解释耦合 ISFET 传感器对 pH 值的响应,该理论表明,最大响应程度由 ΔV/ΔpH = 59 mV/pH × α 给出,其中 59 mV/pH 是固有能斯特响应,α 是一个放大因子,取决于传感器和换能器节点的几何和电气特性。虽然电解质/位点结合界面的固有能斯特响应是基本且不可改变的,但我们表明,通过使用不同材料、面积和偏置条件的通道,可以将外传感器响应显著提高到能斯特极限以上。我们通过测量一对 Si 纳米线-纳米板晶体管对的 pH 值响应来验证该理论,该晶体管对实现了超过 10 V/pH 的响应,并展示了该方案在给定配置下实现(渐近)给定信噪比理论下限的潜力。我们根据 Si 平台上异构集成的最新趋势,提出了更大 pH 响应的可能性。