Suppr超能文献

基于颜色偏移模型的计算相机的多聚焦和深度估计。

Multifocusing and depth estimation using a color shift model-based computational camera.

机构信息

Department of Image, Chung-Ang University, Seoul 156-756, Korea.

出版信息

IEEE Trans Image Process. 2012 Sep;21(9):4152-66. doi: 10.1109/TIP.2012.2202671. Epub 2012 Jun 8.

Abstract

This paper presents a novel approach to depth estimation using a multiple color-filter aperture (MCA) camera and its application to multifocusing. An image acquired by the MCA camera contains spatially varying misalignment among RGB color channels, where the direction and length of the misalignment is a function of the distance of an object from the plane of focus. Therefore, if the misalignment is estimated from the MCA output image, multifocusing and depth estimation become possible using a set of image processing algorithms. We first segment the image into multiple clusters having approximately uniform misalignment using a color-based region classification method, and then find a rectangular region that encloses each cluster. For each of the rectangular regions in the RGB color channels, color shifting vectors are estimated using a phase correlation method. After the set of three clusters are aligned in the opposite direction of the estimated color shifting vectors, the aligned clusters are fused to produce an approximately in-focus image. Because of the finite size of the color-filter apertures, the fused image still contains a certain amount of spatially varying out-of-focus blur, which is removed by using a truncated constrained least-squares filter followed by a spatially adaptive artifacts removing filter. Experimental results show that the MCA-based multifocusing method significantly enhances the visual quality of an image containing multiple objects of different distances, and can be fully or partially incorporated into multifocusing or extended depth of field systems. The MCA camera also realizes single camera-based depth estimation, where the displacement between multiple apertures plays a role of the baseline of a stereo vision system. Experimental results show that the estimated depth is accurate enough to perform a variety of vision-based tasks, such as image understanding, description, and robot vision.

摘要

本文提出了一种使用多颜色滤波孔径(MCA)相机进行深度估计的新方法及其在多聚焦中的应用。MCA 相机获取的图像中 RGB 颜色通道之间存在空间上的错位,错位的方向和长度是物体距离聚焦平面的函数。因此,如果从 MCA 输出图像估计错位,可以使用一组图像处理算法实现多聚焦和深度估计。我们首先使用基于颜色的区域分类方法将图像分割成具有近似均匀错位的多个聚类,然后找到包围每个聚类的矩形区域。对于 RGB 颜色通道中的每个矩形区域,使用相位相关方法估计颜色偏移向量。在估计的颜色偏移向量的相反方向上对齐三个聚类之后,将对齐的聚类融合以产生大致聚焦的图像。由于颜色滤波孔径的有限尺寸,融合后的图像仍然包含一定量的空间上变化的离焦模糊,通过使用截断约束最小二乘滤波器和空间自适应伪影去除滤波器可以去除这种模糊。实验结果表明,基于 MCA 的多聚焦方法显著提高了包含不同距离多个物体的图像的视觉质量,可以完全或部分集成到多聚焦或扩展景深系统中。MCA 相机还实现了基于单个相机的深度估计,其中多个孔径之间的位移充当立体视觉系统的基线。实验结果表明,估计的深度足以执行各种基于视觉的任务,如图像理解、描述和机器人视觉。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验