Suppr超能文献

使用单个计算型RGB-D相机进行三维物体运动和速度估计。

Three-dimensional object motion and velocity estimation using a single computational RGB-D camera.

作者信息

Lee Seungwon, Jeong Kyungwon, Park Jinho, Paik Joonki

机构信息

Image Processing and Intelligent Systems Laboratory Graduate School of Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul 156-756, Korea.

出版信息

Sensors (Basel). 2015 Jan 8;15(1):995-1007. doi: 10.3390/s150100995.

Abstract

In this paper, a three-dimensional (3D) object moving direction and velocity estimation method is presented using a dual off-axis color-filtered aperture (DCA)-based computational camera. Conventional object tracking methods provided only two-dimensional (2D) states of an object in the image for the target representation. The proposed method estimates depth information in the object region from a single DCA camera that transforms 2D spatial information into 3D model parameters of the object. We also present a calibration method of the DCA camera to estimate the entire set of camera parameters for a practical implementation. Experimental results show that the proposed DCA-based color and depth (RGB-D) camera can calculate the 3D object moving direction and velocity of a randomly moving object in a single-camera framework.

摘要

本文提出了一种基于双离轴彩色滤光孔径(DCA)的计算相机来估计三维(3D)物体运动方向和速度的方法。传统的物体跟踪方法仅提供图像中物体的二维(2D)状态用于目标表示。所提出的方法从单个DCA相机估计物体区域中的深度信息,该相机将二维空间信息转换为物体的三维模型参数。我们还提出了一种DCA相机的校准方法,以估计用于实际应用的整套相机参数。实验结果表明,所提出的基于DCA的彩色和深度(RGB-D)相机能够在单相机框架中计算随机移动物体的三维物体运动方向和速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaed/4327060/eb5fec59a7c6/sensors-15-00995f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验