Colmer Hannah E, Margarit Charles G, Smith Jeremy M, Jackson Timothy A, Telser Joshua
Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 USA.
Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003 USA.
Eur J Inorg Chem. 2016 Jun;2016(15-16):2413-2423. doi: 10.1002/ejic.201501250. Epub 2015 Dec 23.
Six-coordinate Mn complexes are typically high-spin ( = 2), however, the scorpionate ligand, both in its traditional, hydridotris(pyrazolyl)borate form, Tp and Tp* (the latter with 3,5-dimethylpyrazole substituents) and in an aryltris(carbene)borate (, -heterocyclic carbene, NHC) form, [Ph(MeIm)B], (MeIm = 3-methylimidazole) lead to formation of bis(scorpionate) complexes of Mn with spin triplet ground states; three of which were investigated herein: [TpMn]SbF (SBF), [Tp*Mn]SbF (SBF), and [{Ph(MeIm)B}Mn]CFSO (CFSO). These trigonally symmetric complexes were studied experimentally by magnetic circular dichroism (MCD) spectroscopy (the propensity of to oxidize to Mn precluded collection of useful MCD data) including variable temperatures and fields (VTVH-MCD) and computationally by ab initio CASSCF/NEVPT2 methods. These combined experimental and theoretical techniques establish the A electronic ground state for the three complexes, and provide information on the energy of the "conventional" high-spin excited state (E) and other, triplet excited states. These results show the electronic effect of pyrazole ring substituents in comparing and . The tunability of the scorpionate ligand, even by perhaps the simplest change (from pyrazole in to 3,5-dimethylpyrazole in ) is quantitatively manifested through perturbations in ligand-field excited-state energies that impact ground-state zero-field splittings. The comparison with the NHC donor is much more dramatic. In , the stronger σ-donor properties of the NHC lead to a quantitatively different electronic structure, so that the lowest lying spin triplet excited state, E, is much closer in energy to the ground state than in or . The zero-field splitting (zfs) parameters of the three complexes were calculated and in the case of and compare closely to experiment (lower by < 10%, < 2 cm in absolute terms); for the large magnitude zfs is reproduced, although there is ambiguity about its sign. The comprehensive picture obtained for these bis(scorpionate) Mn complexes provides quantitative insight into the role played by the scorpionate ligand in stabilizing unusual electronic structures.
六配位的锰配合物通常是高自旋的((S = 2)),然而,螯合配体,无论是其传统的氢化三(吡唑基)硼酸酯形式,即Tp和Tp*(后者带有3,5 - 二甲基吡唑取代基),还是芳基三(卡宾)硼酸酯((\sigma),(\pi -)杂环卡宾,NHC)形式,即([Ph(MeIm)B])(MeIm = 3 - 甲基咪唑),都会导致形成具有自旋三重基态的锰双(螯合)配合物;本文研究了其中三种:([TpMn]SbF_6)((SBF))、([TpMn]SbF_6)((SBF))和([{Ph(MeIm)B}Mn]CF_3SO_3)((CF_3SO_3))。通过磁圆二色性(MCD)光谱对这些具有三角对称的配合物进行了实验研究(([{Ph(MeIm)B}Mn]CF_3SO_3)氧化为(Mn^{III})的倾向使得无法收集到有用的MCD数据),包括变温变场(VTVH - MCD),并通过从头算CASSCF/NEVPT2方法进行了计算。这些结合的实验和理论技术确定了这三种配合物的(A)电子基态,并提供了关于“传统”高自旋激发态((E))和其他三重激发态能量的信息。这些结果展示了吡唑环取代基在比较(Tp)和(Tp)时的电子效应。螯合配体的可调性,即使可能是最简单的变化(从(Tp)中的吡唑到(Tp*)中的3,5 - 二甲基吡唑),也通过影响基态零场分裂的配体场激发态能量的扰动而定量体现出来。与NHC供体的比较则更为显著。在([{Ph(MeIm)B}Mn]CF_3SO_3)中,NHC更强的(\sigma -)供体性质导致了定量上不同的电子结构,因此,最低的自旋三重激发态(E)在能量上比在(Tp)或(Tp*)配合物中更接近基态。计算了这三种配合物的零场分裂(zfs)参数,对于([TpMn]SbF_6)和([Tp*Mn]SbF_6),计算结果与实验结果非常接近(绝对误差小于10%,小于2 (cm^{-1}));对于([{Ph(MeIm)B}Mn]CF_3SO_3),虽然其zfs的符号存在不确定性,但较大的zfs值被重现。从这些锰双(螯合)配合物中获得的全面情况为螯合配体在稳定异常电子结构中所起的作用提供了定量的见解。