Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States.
Inorg Chem. 2013 Jan 7;52(1):144-59. doi: 10.1021/ic301630d. Epub 2012 Dec 24.
Three complexes of Mn(III) with "scorpionate" type ligands have been investigated by a variety of physical techniques. The complexes are [Tp(2)Mn]SbF(6) (1), [Tp(2)Mn]SbF(6) (2), and {PhB(MeIm)(3)}(2)Mn (3a), where Tp(-) = hydrotris(pyrazolyl)borate anion, Tp(-) = hydrotris(3,5-dimethylpyrazolyl)borate anion, and PhB(MeIm)(3)(-) = phenyltris(3-methylimidazol-2-yl)borate anion. The crystal structure of 3a is reported; the structures of 1 and 2 have been previously reported, but were reconfirmed in this work. The synthesis and characterization of [{PhB(MeIm)(3)}(2)Mn]Cl (3b) are also described. These complexes are of interest in that, in contrast to many hexacoordinate (pseudo-octahedral) complexes of Mn(III), they exhibit a low-spin (triplet) ground state, rather than the high-spin (quintet) ground state. Solid-state electronic absorption spectroscopy, SQUID magnetometry, and high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy were applied. HFEPR, in particular, was useful in characterizing the S = 1 spin Hamiltonian parameters for complex 1, D = +19.97(1), E = 0.42(2) cm(-1), and for 2, D = +15.89(2), E = 0.04(1) cm(-1). In addition, frequency domain Fourier-transform THz-EPR spectroscopy, using coherent synchrotron radiation, was applied to 1 only and gave results in good agreement with HFEPR. Variable-temperature dc magnetic susceptibility measurements of 1 and 2 were also in good agreement with the HFEPR results. This magnitude of zero-field splitting (zfs) is over 4 times larger than that in comparable hexacoordinate Mn(III) systems with S = 2 ground states. Complexes 3a and 3b (i.e., regardless of counteranion) have a yet much larger magnitude zfs, which may be the result of unquenched orbital angular momentum so that the spin Hamiltonian model is not appropriate. The triplet ground state is rationalized in each complex by ligand-field theory (LFT) and by quantum chemistry theory, both density functional theory and unrestricted Hartree-Fock methods. This analysis also shows that spin-crossover behavior is not thermally accessible for these complexes as solids. The donor properties of the three different scorpionate ligands were further characterized using the LFT model that suggests that the tris(carbene)borate is a strong σ-donor with little or no π-bonding.
三种“冠醚型”配体的 Mn(III)配合物已通过多种物理技术进行了研究。这些配合物为[Tp(2)Mn]SbF(6)(1)、[Tp(2)Mn]SbF(6)(2)和{PhB(MeIm)(3)}(2)Mn(3a),其中 Tp(-)为氢三(吡唑基)硼酸盐阴离子,Tp(-)为氢三(3,5-二甲基吡唑基)硼酸盐阴离子,PhB(MeIm)(3)(-)为苯三(3-甲基咪唑-2-基)硼酸盐阴离子。报道了 3a 的晶体结构;1 和 2 的结构以前已经报道过,但在这项工作中得到了重新确认。还描述了[{PhB(MeIm)(3)}(2)Mn]Cl(3b)的合成和表征。这些配合物之所以有趣,是因为与许多六配位(假八面体)Mn(III)配合物相比,它们表现出低自旋(三重态)基态,而不是高自旋(五重态)基态。采用了固态电子吸收光谱、SQUID 磁强计和高频和高场电子顺磁共振(HFEPR)光谱。HFEPR 特别有助于表征 1 的 S = 1 自旋哈密顿参数,D = +19.97(1),E = 0.42(2)cm(-1),以及 2 的 S = 1 自旋哈密顿参数,D = +15.89(2),E = 0.04(1)cm(-1)。此外,仅对 1 应用基于相干同步辐射的频域傅里叶变换太赫兹 EPR 光谱,得到的结果与 HFEPR 一致。1 和 2 的变温直流磁化率测量也与 HFEPR 结果一致。这种零场分裂(zfs)的大小比具有 S = 2 基态的可比六配位 Mn(III)系统大 4 倍以上。配合物 3a 和 3b(即,无论抗衡阴离子如何)的 zfs 更大,这可能是由于未猝灭的轨道角动量,因此自旋哈密顿模型不合适。每个配合物的三重态基态都通过配体场理论(LFT)和量子化学理论(密度泛函理论和非限制哈特利-福克方法)进行了合理化。该分析还表明,这些配合物作为固体,其自旋交叉行为在热上无法获得。还使用 LFT 模型进一步表征了三种不同冠醚配体的供电子性质,该模型表明三(碳烯)硼酸盐是一种强 σ-供体,几乎没有或没有 π-键合。