Laboratorio de Propiedades Termofísicas, Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
J Chem Phys. 2012 Jun 7;136(21):214502. doi: 10.1063/1.4720070.
In this work, a general equation of state (EOS) recently derived by Grzybowski et al. [Phys. Rev. E 83, 041505 (2011)] is applied to 51 molecular and ionic liquids in order to perform density scaling of pVT data employing the scaling exponent γ(EOS). It is found that the scaling is excellent in most cases examined. γ(EOS) values range from 6.1 for ammonia to 13.3 for the ionic liquid [C(4)C(1)im][BF(4)]. These γ(EOS) values are compared with results recently reported by us [E. R. López, A. S. Pensado, M. J. P. Comuñas, A. A. H. Pádua, J. Fernández, and K. R. Harris, J. Chem. Phys. 134, 144507 (2011)] for the scaling exponent γ obtained for several different transport properties, namely, the viscosity, self-diffusion coefficient, and electrical conductivity. For the majority of the compounds examined, γ(EOS) > γ, but for hexane, heptane, octane, cyclopentane, cyclohexane, CCl(4), dimethyl carbonate, m-xylene, and decalin, γ(EOS) < γ. In addition, we find that the γ(EOS) values are very much higher than those of γ for alcohols, pentaerythritol esters, and ionic liquids. For viscosities and the self-diffusion coefficient-temperature ratio, we have tested the relation linking EOS and dynamic scaling parameters, proposed by Paluch et al. [J. Phys. Chem. Lett. 1, 987-992 (2010)] and Grzybowski et al. [J. Chem. Phys. 133, 161101 (2010); Phys. Rev. E 82, 013501 (2010)], that is, γ = (γ(EOS)/φ) + γ(G), where φ is the stretching parameter of the modified Avramov relation for the density scaling of a transport property, and γ(G) is the Grüneisen constant. This relationship is based on data for structural relaxation times near the glass transition temperature for seven molecular liquids, including glass formers, and a single ionic liquid. For all the compounds examined in our much larger database the ratio (γ(EOS)/φ) is actually higher than γ, with the only exceptions of propylene carbonate and 1-methylnaphthalene. Therefore, it seems the relation proposed by Paluch et al. applies only in certain cases, and is really not generally applicable to liquid transport properties such as viscosities, self-diffusion coefficients or electrical conductivities when examined over broad ranges of temperature and pressure.
在这项工作中,Grzybowski 等人最近推导出的一个通用状态方程 (EOS) [Phys. Rev. E 83, 041505 (2011)] 被应用于 51 种分子和离子液体,以便通过缩放指数 γ(EOS) 对 pVT 数据进行密度缩放。结果发现,在大多数情况下,缩放效果非常好。γ(EOS) 值的范围从氨的 6.1 到离子液体 [C(4)C(1)im][BF(4)]的 13.3。这些 γ(EOS) 值与我们最近报告的结果进行了比较[E. R. López, A. S. Pensado, M. J. P. Comuñas, A. A. H. Pádua, J. Fernández, and K. R. Harris, J. Chem. Phys. 134, 144507 (2011)],比较了对于几种不同的输运性质(即粘度、自扩散系数和电导率)获得的 γ 获得的结果。对于大多数被检查的化合物,γ(EOS) > γ,但对于己烷、庚烷、辛烷、环戊烷、环己烷、CCl(4)、碳酸二甲酯、间二甲苯和十氢化萘,γ(EOS) < γ。此外,我们发现 γ(EOS) 值远高于醇、季戊四醇酯和离子液体的 γ 值。对于粘度和自扩散系数-温度比,我们已经测试了 Paluch 等人提出的将 EOS 和动态缩放参数联系起来的关系[J. Phys. Chem. Lett. 1, 987-992 (2010)]和 Grzybowski 等人[J. Chem. Phys. 133, 161101 (2010); Phys. Rev. E 82, 013501 (2010)],即 γ = (γ(EOS)/φ) + γ(G),其中 φ 是输运性质密度缩放的修正 Avramov 关系的拉伸参数,γ(G) 是 Grüneisen 常数。该关系基于七种分子液体(包括玻璃形成剂)和一种离子液体的结构弛豫时间在玻璃化转变温度附近的数据。对于我们更大的数据库中检查的所有化合物,(γ(EOS)/φ)的比值实际上高于 γ,只有碳酸丙烯酯和 1-甲基萘是例外。因此,看来 Paluch 等人提出的关系仅适用于某些情况,并且在研究温度和压力范围很宽的液体输运性质(如粘度、自扩散系数或电导率)时实际上并不普遍适用。