Suppr超能文献

通过模拟和优化提高医院床位利用率:在挪威一家综合医院中将患者数量增加 40%的应用。

Improving hospital bed utilisation through simulation and optimisation: with application to a 40% increase in patient volume in a Norwegian General Hospital.

机构信息

HØKH, Research Centre, Akershus University Hospital, Norway.

出版信息

Int J Med Inform. 2013 Feb;82(2):80-9. doi: 10.1016/j.ijmedinf.2012.05.006. Epub 2012 Jun 13.

Abstract

PURPOSE

This paper analyses the problem of allocating beds among hospital wards in order to minimise crowding.

METHOD

We present a generic discrete event simulation model of patient flow through the wards of a hospital. In the generic model, each ward can have separate probability distributions for arrival times and length of stay, which may be time dependent. Output of the model is a matrix, with statistics on the utilisation of different hypothetical numbers of beds for each ward. This matrix is fed into an allocation algorithm, which distributes the available beds among the wards in an optimal way. We define bed utilisation either in terms of how often it is in use (prevalence), or in terms of how often a newly arriving patient is placed in it (incidence). For these classes of utilisation measures we develop efficient allocation algorithms, which we prove to be optimal.

APPLICATION

The model was applied to Akershus University Hospital in Norway. In 2011, some of the wards of this hospital experienced a high occupancy rate, while others had a lower utilisation. Our model was applied in order to reallocate the hospital beds among the wards. For each ward, acute arrivals were modelled with Poisson-distributions with time-varying intensity, while elective arrivals were programmed to arrive in specific numbers at specific times. The arrival rates were based on empirical data for 2010, scaled up by an expected increase of 40% due to a restructuring of the hospital districts in Oslo and the greater metropolitan area in 2011. Length of stay was modelled as beta-distributions, using a combination of subject matter experts' evaluations and empirical data from 2010. The model has been verified and validated.

RESULTS

Intuitively, both prevalence (average number of crowding beds in use) and incidence (number of patients placed in crowding beds) might seem like relevant optimisation criteria. However, our experiments show that prevalence optimisation gives more sensible solutions than incidence optimisation, as the latter tends to sacrifice entire wards where length of stay is long and patient turnover is slow. Prevalence optimisation was therefore used. The main results show that when the bed distribution is optimised, the share of crowding patient nights is reduced from 6.5% to 4.2%.

CONCLUSION

This model provides a powerful tool for optimising hospital bed utilisation, and the application showed an important reduction in crowding bed usage. The generic model is flexible, as the level of detail in the modelling of arrivals and length of stay can vary according to the data available and accuracy required.

摘要

目的

本文分析了在医院病房中分配床位以最小化拥挤度的问题。

方法

我们提出了一种通用的离散事件模拟模型,用于模拟患者在医院病房中的流动。在通用模型中,每个病房都可以有单独的到达时间和停留时间的概率分布,这些分布可能随时间变化。模型的输出是一个矩阵,其中包含不同假设床位数量的病房使用情况的统计信息。该矩阵被输入到分配算法中,该算法以最佳方式在病房之间分配可用床位。我们根据床位的使用频率(流行度)或新入院患者被安置在其中的频率(发生率)来定义床位的使用情况。对于这些使用情况类别的衡量标准,我们开发了高效的分配算法,证明它们是最优的。

应用

该模型应用于挪威阿克什胡斯大学医院。2011 年,该医院的一些病房入住率很高,而其他病房的利用率较低。我们的模型被用于重新分配医院床位。对于每个病房,急性到达被建模为具有时变强度的泊松分布,而选择性到达则被编程为在特定时间到达特定数量。到达率基于 2010 年的经验数据,并根据 2011 年奥斯陆和大都市区医院区重组导致的 40%的预期增长进行了调整。停留时间被建模为 beta 分布,使用主题专家的评估和 2010 年的经验数据的组合。该模型已经经过验证和验证。

结果

直观地说,流行度(使用中的拥挤床位的平均数量)和发生率(安置在拥挤床位中的患者数量)似乎都是相关的优化标准。然而,我们的实验表明,流行度优化比发生率优化给出了更合理的解决方案,因为后者往往会牺牲整个病房,这些病房的停留时间长,患者周转率慢。因此,采用了流行度优化。主要结果表明,当床位分配得到优化时,拥挤患者夜间的比例从 6.5%降至 4.2%。

结论

该模型为优化医院床位利用提供了一个强大的工具,应用表明拥挤床位的使用量有了显著减少。通用模型具有灵活性,因为到达和停留时间的建模详细程度可以根据可用数据和所需精度而变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验