Suppr超能文献

分子中电子输运的轨道规则。

An orbital rule for electron transport in molecules.

机构信息

Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan.

出版信息

Acc Chem Res. 2012 Sep 18;45(9):1612-21. doi: 10.1021/ar300075f. Epub 2012 Jun 14.

Abstract

The transfer of electrons in molecules and solids is an essential process both in biological systems and in electronic devices. Devices that take advantage of the unique electronic properties of a single molecule have attracted much attention, and applications of these devices include molecular wire, molecular memory, and molecular diodes. The so-called Landauer formula with Green's function techniques provides a basis for theoretical calculations of coherent electron transport in metal-molecule-metal junctions. We have developed a chemical way of thinking about electron transport in molecules in terms of frontier orbital theory. The phase and amplitude of the HOMO and LUMO of π-conjugated molecules determine the essential properties of their electron transport. By considering a close relationship between Green's function and the molecular orbital, we derived an orbital rule that would help our chemical understanding of the phenomenon. First, the sign of the product of the orbital coefficients at sites r and s in the HOMO should be different from the sign of the product of the orbital coefficients at sites r and s in the LUMO. Second, sites r and s in which the amplitude of the HOMO and LUMO is large should be connected. The derived rule allows us to predict essential electron transport properties, which significantly depend on the route of connection between a molecule and electrodes. Qualitative analyses of the site-dependent electron transport in naphthalene (as shown in the graphics) demonstrate that connections 1-4, 1-5, 2-3, and 2-6 are symmetry-allowed for electron transmission, while connections 1-8 and 2-7 are symmetry-forbidden. On the basis of orbital interaction analysis, we have extended this rule to metal-molecule-metal junctions of dithiol derivatives in which two gold electrodes have direct contacts with a molecule through two Au-S bonds. Recently we confirmed these theoretical predictions experimentally by using nanofabricated mechanically controllable break junctions to measure the single-molecule conductance of naphthalene dithiol derivatives. The measurement of the symmetry-allowed 1,4-naphthalene dithiol shows a single-molecule conductance that exceeds that of the symmetry-forbidden 2,7-naphthalene dithiol by 2 orders of magnitude. Because the HOMO and LUMO levels and the HOMO-LUMO gaps are similar in the derivatives, the difference in the measured molecular conductances arises from the difference in the phase relationship of the frontier orbitals. Thus, the phase, amplitude, and spatial distribution of the frontier orbitals provide a way to rationally control electron transport properties within and between molecules.

摘要

分子和固体中的电子转移是生物系统和电子设备中必不可少的过程。利用单个分子独特电子性质的器件引起了广泛关注,这些器件的应用包括分子线、分子存储器和分子二极管。所谓的具有格林函数技术的兰道尔公式为金属-分子-金属结中相干电子输运的理论计算提供了基础。我们已经发展了一种基于前线轨道理论的分子内电子输运的化学思维方式。π共轭分子的 HOMO 和 LUMO 的相位和幅度决定了其电子输运的基本性质。通过考虑格林函数和分子轨道之间的密切关系,我们推导出了一个轨道规则,可以帮助我们从化学角度理解这一现象。首先,HOMO 中位置 r 和 s 的轨道系数的乘积的符号应与 LUMO 中位置 r 和 s 的轨道系数的乘积的符号不同。其次,HOMO 和 LUMO 幅度较大的位置 r 和 s 应该相连。推导出的规则可以预测基本的电子输运性质,这主要取决于分子与电极之间的连接路径。萘(如图所示)的基于位置的电子输运的定性分析表明,连接 1-4、1-5、2-3 和 2-6 对于电子传输是对称允许的,而连接 1-8 和 2-7 是对称禁止的。基于轨道相互作用分析,我们将该规则扩展到二硫醇衍生物的金-分子-金结中,其中两个金电极通过两个 Au-S 键与分子直接接触。最近,我们通过使用纳米制造的机械可控断结来测量萘二硫醇衍生物的单分子电导,实验证实了这些理论预测。对对称允许的 1,4-萘二硫醇的测量显示,单分子电导比对称禁止的 2,7-萘二硫醇高出两个数量级。由于衍生物中的 HOMO 和 LUMO 能级以及 HOMO-LUMO 能隙相似,测量的分子电导率的差异来自于前线轨道的相位关系的差异。因此,前线轨道的相位、幅度和空间分布为在分子内和分子间合理控制电子输运性质提供了一种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验