Pattanayak Sujata, Mohanty U C, Osuri Krishna K
Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
ScientificWorldJournal. 2012;2012:671437. doi: 10.1100/2012/671437. Epub 2012 Jun 4.
The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error.
本研究旨在调查不同的积云对流、行星边界层、陆面过程和微物理参数化方案在模拟2008年4月27日在孟加拉湾中部发展形成的超级气旋风暴(VSCS)“纳尔吉斯”时的表现。为此,使用了天气研究与预报(WRF)系统的非静力中尺度模式(NMM)动力核心。根据印度气象部门(IMD)和热带降雨测量任务(TRMM)提供的观测数据,对模式模拟的路径位置以及以最低中心平均海平面气压(MSLP)、最大地面风(10米高度)和降水量表示的强度进行了验证。针对同一案例的六种不同初始条件,对估计的最佳组合进行了重新研究,以便对WRF-NMM的性能得出更好的结论。还评估了一些其他诊断场,如垂直速度、涡度和热通量。结果表明,积云对流在气旋移动中起重要作用,行星边界层在风暴增强中起关键作用。WRF-NMM中简化的荒川舒伯特(SAS)对流、延世大学(YSU)行星边界层、NMM陆面和费里尔微物理参数化方案的组合给出了更好的路径和强度预报,矢量位移误差最小。