Suppr超能文献

基于 ML-kNN 和信息融合的智能中医高血压分类。

Intelligent ZHENG Classification of Hypertension Depending on ML-kNN and Information Fusion.

机构信息

Department of Control Science and Engineering, Tongji University, Shanghai 201804, China.

出版信息

Evid Based Complement Alternat Med. 2012;2012:837245. doi: 10.1155/2012/837245. Epub 2012 Jun 3.

Abstract

Hypertension is one of the major causes of heart cerebrovascular diseases. With a good accumulation of hypertension clinical data on hand, research on hypertension's ZHENG differentiation is an important and attractive topic, as Traditional Chinese Medicine (TCM) lies primarily in "treatment based on ZHENG differentiation." From the view of data mining, ZHENG differentiation is modeled as a classification problem. In this paper, ML-kNN-a multilabel learning model-is used as the classification model for hypertension. Feature-level information fusion is also used for further utilization of all information. Experiment results show that ML-kNN can model the hypertension's ZHENG differentiation well. Information fusion helps improve models' performance.

摘要

高血压是心脑血管疾病的主要病因之一。积累了大量的高血压临床资料,研究高血压的辨证分型是一个重要而有吸引力的课题,因为中医主要是“辨证论治”。从数据挖掘的角度来看,辨证可以建模为一个分类问题。本文采用 ML-kNN 多标签学习模型作为高血压的分类模型,并进行特征级信息融合,以进一步利用所有信息。实验结果表明,ML-kNN 可以很好地对高血压的辨证进行建模,信息融合有助于提高模型的性能。

相似文献

1
Intelligent ZHENG Classification of Hypertension Depending on ML-kNN and Information Fusion.
Evid Based Complement Alternat Med. 2012;2012:837245. doi: 10.1155/2012/837245. Epub 2012 Jun 3.
2
Patient classification of hypertension in Traditional Chinese Medicine using multi-label learning techniques.
BMC Med Genomics. 2015;8 Suppl 3(Suppl 3):S4. doi: 10.1186/1755-8794-8-S3-S4. Epub 2015 Sep 23.
3
Research on zheng classification fusing pulse parameters in coronary heart disease.
Evid Based Complement Alternat Med. 2013;2013:602672. doi: 10.1155/2013/602672. Epub 2013 Apr 30.
4
A Microcosmic Syndrome Differentiation Model for Metabolic Syndrome with Multilabel Learning.
Evid Based Complement Alternat Med. 2020 Nov 26;2020:9081641. doi: 10.1155/2020/9081641. eCollection 2020.
5
Traditional chinese medicine zheng in the era of evidence-based medicine: a literature analysis.
Evid Based Complement Alternat Med. 2012;2012:409568. doi: 10.1155/2012/409568. Epub 2012 Jun 6.
6
Clinical Applications of Omics Technologies on ZHENG Differentiation Research in Traditional Chinese Medicine.
Evid Based Complement Alternat Med. 2013;2013:989618. doi: 10.1155/2013/989618. Epub 2013 Jun 18.
8
ZHENG-Omics Application in ZHENG Classification and Treatment: Chinese Personalized Medicine.
Evid Based Complement Alternat Med. 2013;2013:235969. doi: 10.1155/2013/235969. Epub 2013 Apr 3.
9
Automated Tongue Feature Extraction for ZHENG Classification in Traditional Chinese Medicine.
Evid Based Complement Alternat Med. 2012;2012:912852. doi: 10.1155/2012/912852. Epub 2012 May 31.
10
Classification and Progression Based on CFS-GA and C5.0 Boost Decision Tree of TCM Zheng in Chronic Hepatitis B.
Evid Based Complement Alternat Med. 2013;2013:695937. doi: 10.1155/2013/695937. Epub 2013 Jan 27.

引用本文的文献

1
Intelligent diagnosis of resistance variant multiple fault locations of mine ventilation system based on ML-KNN.
PLoS One. 2022 Sep 30;17(9):e0275437. doi: 10.1371/journal.pone.0275437. eCollection 2022.
2
Effective attention-based network for syndrome differentiation of AIDS.
BMC Med Inform Decis Mak. 2020 Oct 15;20(1):264. doi: 10.1186/s12911-020-01249-0.
4
Cluster analysis for syndromes of real-world coronary heart disease with angina pectoris.
Front Med. 2018 Oct;12(5):566-571. doi: 10.1007/s11684-017-0556-1. Epub 2017 Dec 5.
5
A novel classification method for aid decision of traditional Chinese patent medicines for stroke treatment.
Front Med. 2017 Sep;11(3):432-439. doi: 10.1007/s11684-017-0511-1. Epub 2017 May 13.
7
Syndrome Differentiation Analysis on Mars500 Data of Traditional Chinese Medicine.
ScientificWorldJournal. 2015;2015:125736. doi: 10.1155/2015/125736. Epub 2015 Oct 1.
8
Patient classification of hypertension in Traditional Chinese Medicine using multi-label learning techniques.
BMC Med Genomics. 2015;8 Suppl 3(Suppl 3):S4. doi: 10.1186/1755-8794-8-S3-S4. Epub 2015 Sep 23.
9
Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective.
Evid Based Complement Alternat Med. 2015;2015:376716. doi: 10.1155/2015/376716. Epub 2015 Jul 12.
10
A Novel Classification Method for Syndrome Differentiation of Patients with AIDS.
Evid Based Complement Alternat Med. 2015;2015:936290. doi: 10.1155/2015/936290. Epub 2015 Jun 9.

本文引用的文献

1
A novel approach in discovering significant interactions from TCM patient prescription data.
Int J Data Min Bioinform. 2011;5(4):353-68. doi: 10.1504/ijdmb.2011.041553.
2
Hypertensive crisis: clinical-epidemiological profile.
Hypertens Res. 2011 Mar;34(3):367-71. doi: 10.1038/hr.2010.245. Epub 2010 Dec 16.
4
Text mining for traditional Chinese medical knowledge discovery: a survey.
J Biomed Inform. 2010 Aug;43(4):650-60. doi: 10.1016/j.jbi.2010.01.002. Epub 2010 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验