Suppr超能文献

基于多标签学习技术的中医高血压患者分类

Patient classification of hypertension in Traditional Chinese Medicine using multi-label learning techniques.

作者信息

Li Guo-Zheng, He Zehui, Shao Feng-Feng, Ou Ai-Hua, Lin Xiao-Zhong

出版信息

BMC Med Genomics. 2015;8 Suppl 3(Suppl 3):S4. doi: 10.1186/1755-8794-8-S3-S4. Epub 2015 Sep 23.

Abstract

BACKGROUND

Hypertension is one of the major risk factors for cardiovascular diseases. Research on the patient classification of hypertension has become an important topic because Traditional Chinese Medicine lies primarily in "treatment based on syndromes differentiation of the patients".

METHODS

Clinical data of hypertension was collected with 12 syndromes and 129 symptoms including inspection, tongue, inquiry, and palpation symptoms. Syndromes differentiation was modeled as a patient classification problem in the field of data mining, and a new multi-label learning model BrSmoteSvm was built dealing with the class-imbalanced of the dataset.

RESULTS

The experiments showed that the BrSmoteSvm had a better results comparing to other multi-label classifiers in the evaluation criteria of Average precision, Coverage, One-error, Ranking loss.

CONCLUSIONS

BrSmoteSvm can model the hypertension's syndromes differentiation better considering the imbalanced problem.

摘要

背景

高血压是心血管疾病的主要危险因素之一。由于中医主要基于“辨证论治”,高血压患者分类研究已成为一个重要课题。

方法

收集高血压临床数据,包括望、舌、问、切等12种证候和129种症状。在数据挖掘领域,将辨证论治建模为患者分类问题,并构建了一种新的多标签学习模型BrSmoteSvm来处理数据集的类不平衡问题。

结果

实验表明,在平均精度、覆盖度、单错误率、排序损失等评估标准方面,BrSmoteSvm比其他多标签分类器具有更好的结果。

结论

考虑到不平衡问题,BrSmoteSvm能够更好地对高血压辨证论治进行建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4eb/4582323/4f9d8f22112b/1755-8794-8-S3-S4-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验