Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan.
Sci Total Environ. 2012 Aug 1;431:392-401. doi: 10.1016/j.scitotenv.2012.05.041. Epub 2012 Jun 15.
The Fukushima Dai-ichi nuclear power plant accident in Japan, triggered by a big earthquake and the resulting tsunami on 11 March 2011, caused a substantial release of radiocesium ((137)Cs and (134)Cs) and a subsequent contamination of soils in a range of terrestrial ecosystems. Identifying factors and processes affecting radiocesium retention in these soils is essential to predict how the deposited radiocesium will migrate through the soil profile and to other biological components. We investigated vertical distributions of radiocesium and physicochemical properties in soils (to 20 cm depth) at 15 locations under different land-use types (croplands, grasslands, and forests) within a 2 km × 2 km mesh area in Fukushima city. The total (137)Cs inventory deposited onto and into soil was similar (58.4±9.6 kBq m(-2)) between the three different land-use types. However, aboveground litter layer at the forest sites and herbaceous vegetation at the non-forested sites contributed differently to the total (137)Cs inventory. At the forest sites, 50-91% of the total inventory was observed in the litter layer. The aboveground vegetation contribution was in contrast smaller (<35%) at the other sites. Another remarkable difference was found in vertical distribution of (137)Cs in mineral soil layers; (137)Cs penetrated deeper in the forest soil profiles than in the non-forested soil profiles. We quantified (137)Cs retention at surface soil layers, and showed that higher (137)Cs retention can be explained in part by larger amounts of silt- and clay-sized particles in the layers. More importantly, the (137)Cs retention highly and negatively correlated with soil organic carbon content divided by clay content across all land-use types. The results suggest that organic matter inhibits strong adsorption of (137)Cs on clay minerals in surface soil layers, and as a result affects the vertical distribution and thus the mobility of (137)Cs in soil, particularly in the forest ecosystems.
日本 2011 年 3 月 11 日发生的福岛第一核电站事故是由一场大地震和随后的海啸引发的,导致放射性铯(137Cs 和 134Cs)大量释放,并随后污染了一系列陆地生态系统中的土壤。确定影响这些土壤中放射性铯保留的因素和过程对于预测沉积的放射性铯将如何通过土壤剖面迁移以及迁移到其他生物组成部分至关重要。我们调查了福岛市 2 公里×2 公里网格区域内 15 个不同土地利用类型(耕地、草地和森林)下土壤(至 20 厘米深度)中放射性铯的垂直分布和理化性质。三种不同土地利用类型的土壤总(137)Cs 沉积量(58.4±9.6 kBq m(-2))相似。然而,森林样地的地上凋落物层和非森林样地的草本植被对总(137)Cs 沉积量的贡献不同。在森林样地,总库存的 50-91%观察到在凋落物层中。相比之下,其他地点的地上植被贡献较小(<35%)。在矿物土壤层中,(137)Cs 的垂直分布也存在明显差异;(137)Cs 在森林土壤剖面中穿透得更深,而在非森林土壤剖面中穿透得较浅。我们量化了表层土壤中(137)Cs 的保留量,并表明,较大的(137)Cs 保留量可以部分解释为土壤层中更多的粉砂和粘粒大小的颗粒。更重要的是,(137)Cs 的保留量与所有土地利用类型的土壤有机碳含量除以粘粒含量高度负相关。结果表明,有机质抑制了(137)Cs 在表层土壤中粘粒上的强烈吸附,从而影响了(137)Cs 在土壤中的垂直分布,进而影响了其在土壤中的流动性,特别是在森林生态系统中。