Suppr超能文献

深度测序数据的插入缺失分析:最优检测的软件评估。

Analysis of insertion-deletion from deep-sequencing data: software evaluation for optimal detection.

机构信息

Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Brief Bioinform. 2013 Jan;14(1):46-55. doi: 10.1093/bib/bbs013. Epub 2012 Mar 24.

Abstract

Insertion and deletion (indel) mutations, the most common type of structural variance in the human genome, affect a multitude of human traits and diseases. New sequencing technologies, such as deep sequencing, allow massive throughput of sequence data and greatly contribute to the field of disease causing mutation detection, in general, and indel detection, specifically. In order to infer indel presence (indel calling), the deep-sequencing data have to undergo comprehensive computational analysis. Selecting which indel calling software to use can often skew the results and inherent tool limitations may affect downstream analysis. In order to better understand these inter-software differences, we evaluated the performance of several indel calling software for short indel (1-10 nt) detection. We compared the software's sensitivity and predictive values in the presence of varying parameters such as read depth (coverage), read length, indel size and frequency. We pinpoint several key features that assist successful experimental design and appropriate tool selection. Our study may also serve as a basis for future evaluation of additional indel calling methods.

摘要

插入和缺失(indel)突变是人类基因组中最常见的结构变异类型,影响着众多人类特征和疾病。新的测序技术,如深度测序,允许大量的序列数据通量,并极大地促进了致病突变检测领域,一般来说,indel 检测,具体来说。为了推断 indel 的存在(indel 调用),深度测序数据必须经过全面的计算分析。选择使用哪种 indel 调用软件通常会歪曲结果,并且固有工具的局限性可能会影响下游分析。为了更好地理解这些软件之间的差异,我们评估了几种短 indel(1-10nt)检测的 indel 调用软件的性能。我们比较了软件在不同参数(如读深度(覆盖度)、读长、indel 大小和频率)下的灵敏度和预测值。我们指出了几个有助于成功实验设计和适当工具选择的关键特征。我们的研究也可以为未来对其他 indel 调用方法的评估提供基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验