Suppr超能文献

赖氨酸的翻译后修饰和细胞骨架。

Lysine post-translational modifications and the cytoskeleton.

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A.

出版信息

Essays Biochem. 2012;52:135-45. doi: 10.1042/bse0520135.

Abstract

PTMs (post-translational modifications) of lysine residues have proven to be major regulators of gene expression, protein-protein interactions, and protein processing and degradation. This is of particular importance in regulating the cytoskeleton, an enormously complex system of proteins responsible for cell motility, intracellular trafficking, and maintenance of cell form and structure. The cytoskeleton is present in all cells, including eukaryotes and prokaryotes, and comprises structures such as flagella, cilia and lamellipodia which play critical roles in intracellular transport and cellular division. Cytoskeletal regulation relies on numerous multi-component assemblies. In this chapter, we focus on the regulation of the cytoskeleton by means of PTMs of lysine residues on the cytoskeletal subunits and their accessory proteins. We specifically address the three main classes of cytoskeletal proteins in eukaryotes that polymerize into filaments, including microfilaments (actin filaments), intermediate filaments and microtubules. We discuss the identification and biological importance of lysine acetylation, a regulator of all three filament types. We also review additional lysine modifications, such as ubiquitination and SUMOylation, and their role in protein regulation and processing.

摘要

赖氨酸残基的 PTMs(翻译后修饰)已被证明是基因表达、蛋白质-蛋白质相互作用以及蛋白质加工和降解的主要调节剂。这在调节细胞骨架方面尤为重要,细胞骨架是一个由蛋白质组成的极其复杂的系统,负责细胞运动、细胞内运输以及维持细胞形态和结构。细胞骨架存在于所有细胞中,包括真核生物和原核生物,并且包含鞭毛、纤毛和片状伪足等结构,在细胞内运输和细胞分裂中起着关键作用。细胞骨架的调节依赖于许多多组分组装体。在本章中,我们专注于通过细胞骨架亚基和其辅助蛋白上赖氨酸残基的 PTMs 来调节细胞骨架。我们特别针对真核生物中聚合成纤维的三种主要类型的细胞骨架蛋白进行讨论,包括微丝(肌动蛋白纤维)、中间丝和微管。我们讨论了赖氨酸乙酰化的鉴定和生物学重要性,它是三种纤维类型的调节剂。我们还回顾了其他赖氨酸修饰,如泛素化和 SUMO 化,以及它们在蛋白质调节和加工中的作用。

相似文献

1
Lysine post-translational modifications and the cytoskeleton.
Essays Biochem. 2012;52:135-45. doi: 10.1042/bse0520135.
2
Posttranslational modifications of the cytoskeleton.
Cytoskeleton (Hoboken). 2021 Apr;78(4):142-173. doi: 10.1002/cm.21679. Epub 2021 Jul 2.
4
Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control.
Trends Biochem Sci. 2019 Jun;44(6):502-516. doi: 10.1016/j.tibs.2018.11.010. Epub 2019 Jan 2.
5
Back on track - on the role of the microtubule for kinesin motility and cellular function.
J Muscle Res Cell Motil. 2006;27(2):161-71. doi: 10.1007/s10974-005-9052-3. Epub 2006 Feb 2.
6
Post-translational modifications soften vimentin intermediate filaments.
Nanoscale. 2021 Jan 7;13(1):380-387. doi: 10.1039/d0nr07322a. Epub 2020 Dec 22.
7
Unraveling the battle for lysine: A review of the competition among post-translational modifications.
Biochim Biophys Acta Gene Regul Mech. 2023 Dec;1866(4):194990. doi: 10.1016/j.bbagrm.2023.194990. Epub 2023 Sep 24.
8
Cytoskeletal crosstalk: A focus on intermediate filaments.
Curr Opin Cell Biol. 2024 Apr;87:102325. doi: 10.1016/j.ceb.2024.102325. Epub 2024 Feb 14.
9
PLMD: An updated data resource of protein lysine modifications.
J Genet Genomics. 2017 May 20;44(5):243-250. doi: 10.1016/j.jgg.2017.03.007. Epub 2017 May 3.
10
Post-Translational Modifications During Brain Development.
Adv Exp Med Biol. 2022;1382:29-38. doi: 10.1007/978-3-031-05460-0_3.

引用本文的文献

1
Evolutionary perspective on mammalian inorganic polyphosphate (polyP) biology.
Biochem Soc Trans. 2023 Oct 31;51(5):1947-1956. doi: 10.1042/BST20230483.
2
PRMT1 and PRMT5: on the road of homologous recombination and non-homologous end joining.
Genome Instab Dis. 2023 Aug;4(4):197-209. doi: 10.1007/s42764-022-00095-w. Epub 2022 Dec 7.
4
CHARMM-GUI PDB Manipulator: Various PDB Structural Modifications for Biomolecular Modeling and Simulation.
J Mol Biol. 2023 Jul 15;435(14):167995. doi: 10.1016/j.jmb.2023.167995. Epub 2023 Feb 2.
5
The cardioprotective role of sirtuins is mediated in part by regulating K channel surface expression.
Am J Physiol Cell Physiol. 2023 May 1;324(5):C1017-C1027. doi: 10.1152/ajpcell.00459.2022. Epub 2023 Mar 6.
6
The role of altered protein acetylation in neurodegenerative disease.
Front Aging Neurosci. 2023 Jan 4;14:1025473. doi: 10.3389/fnagi.2022.1025473. eCollection 2022.
8
Proteomic profiling of lysine acetylation and succinylation in Staphylococcus aureus.
Clin Transl Med. 2022 Oct;12(10):e1058. doi: 10.1002/ctm2.1058.

本文引用的文献

1
Determining nuclear shape: the role of farnesylated nuclear membrane proteins.
Nucleus. 2011 Jan-Feb;2(1):17-23. doi: 10.4161/nucl.2.1.13992.
2
HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity.
J Biol Chem. 2011 Feb 18;286(7):5567-77. doi: 10.1074/jbc.M110.163865. Epub 2010 Dec 21.
3
Keratin gene mutations in disorders of human skin and its appendages.
Arch Biochem Biophys. 2011 Apr 15;508(2):123-37. doi: 10.1016/j.abb.2010.12.019. Epub 2010 Dec 19.
4
The tale of protein lysine acetylation in the cytoplasm.
J Biomed Biotechnol. 2011;2011:970382. doi: 10.1155/2011/970382. Epub 2010 Nov 28.
5
Expression and silencing of the microtubule-associated protein Tau in breast cancer cells.
Mol Cancer Ther. 2010 Nov;9(11):2970-81. doi: 10.1158/1535-7163.MCT-10-0780. Epub 2010 Nov 9.
6
Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation.
Science. 2010 Sep 17;329(5998):1534-7. doi: 10.1126/science.1191701.
7
MEC-17 is an alpha-tubulin acetyltransferase.
Nature. 2010 Sep 9;467(7312):218-22. doi: 10.1038/nature09324.
9
Tubulin polyglutamylation stimulates spastin-mediated microtubule severing.
J Cell Biol. 2010 Jun 14;189(6):945-54. doi: 10.1083/jcb.201001024. Epub 2010 Jun 7.
10
The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation.
PLoS Genet. 2010 Jan 22;6(1):e1000820. doi: 10.1371/journal.pgen.1000820.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验