INMED, INSERM UMR901 and Aix-Marseille Université, Marseille, France.
Eur J Neurosci. 2012 Jun;35(12):1846-56. doi: 10.1111/j.1460-9568.2012.08152.x.
The developing brain is not a small adult brain. Voltage- and transmitter-gated currents, like network-driven patterns, follow a developmental sequence. Studies initially performed in cortical structures and subsequently in subcortical structures have unravelled a developmental sequence of events in which intrinsic voltage-gated calcium currents are followed by nonsynaptic calcium plateaux and synapse-driven giant depolarising potentials, orchestrated by depolarizing actions of GABA and long-lasting NMDA receptor-mediated currents. The function of these early patterns is to enable heterogeneous neurons to fire and wire together rather than to code specific modalities. However, at some stage, behaviourally relevant activities must replace these immature patterns, implying the presence of programmed stop signals. Here, we show that the developing striatum follows a developmental sequence in which immature patterns are silenced precisely when the pup starts locomotion. This is mediated by a loss of the long-lasting NMDA-NR2C/D receptor-mediated current and the expression of a voltage-gated K(+) current. At the same time, the descending inputs to the spinal cord become fully functional, accompanying a GABA/glycine polarity shift and ending the expression of developmental patterns. Therefore, although the timetable of development differs in different brain structures, the g sequence is quite similar, relying first on nonsynaptic events and then on synaptic oscillations that entrain large neuronal populations. In keeping with the 'neuroarcheology' theory, genetic mutations or environmental insults that perturb these developmental sequences constitute early signatures of developmental disorders. Birth dating developmental disorders thus provides important indicators of the event that triggers the pathological cascade leading ultimately to disease.
发育中的大脑不同于成熟的大脑。电压门控电流和递质门控电流,与网络驱动模式一样,遵循发育顺序。最初在皮质结构中进行的研究,随后在皮质下结构中进行的研究揭示了一系列发育事件的顺序,其中,内在的电压门控钙电流继之以非突触钙平台和由 GABA 去极化作用和长时程 NMDA 受体介导的电流驱动的突触驱动的巨大去极化电位。这些早期模式的功能是使异质神经元能够放电并连接在一起,而不是编码特定的模态。然而,在某个阶段,行为相关的活动必须取代这些不成熟的模式,这意味着存在程序化的停止信号。在这里,我们表明发育中的纹状体遵循发育顺序,在幼仔开始运动时,不成熟的模式会被精确地沉默。这是由长时程 NMDA-NR2C/D 受体介导的电流的丧失和电压门控 K(+)电流的表达介导的。与此同时,脊髓的下行输入完全发挥功能,伴随着 GABA/甘氨酸极性的转变,结束了发育模式的表达。因此,尽管不同脑结构的发育时间表不同,但 g 序列非常相似,首先依赖于非突触事件,然后依赖于同步化大型神经元群体的突触振荡。与“神经考古学”理论一致,扰乱这些发育序列的基因突变或环境损伤构成了发育障碍的早期特征。因此,出生时间发育障碍为触发导致疾病的病理级联的事件提供了重要的指标。