Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, USA.
J Acoust Soc Am. 2012 Jun;131(6):4450-60. doi: 10.1121/1.4714343.
Acoustic propagation can be described by rays and normal modes. Applying the path integral to refractive rays in three dimensional space, Dashen et al. [J. Acoust. Soc. Am. 77, 1716-1722 (1985)] derived the mutual coherence function of the acoustic field. For shallow water where sound interacts with boundaries, the acoustic field can be described by vertical modes and horizontal rays. Applying the path integral to the horizontal rays, one obtains the mutual coherence function of the normal modes. This paper applies this formulation to the derivation of the temporal coherence function of individual modes and also that of the acoustic field in the presence of linear internal waves. The effects of mode coupling due to internal waves on temporal coherence loss are illustrated with numerical calculations.
声传播可以用射线和法向模式来描述。Dashen 等人[J. Acoust. Soc. Am. 77, 1716-1722 (1985)]将路径积分应用于三维空间中的折射射线,推导出了声场的互相干函数。在浅水中,声音与边界相互作用,声场可以用垂直模式和水平射线来描述。将路径积分应用于水平射线,可以得到法向模式的互相干函数。本文将这一公式应用于推导单个模式的时间相干函数以及线性内波存在时的声场的时间相干函数。通过数值计算说明了内波引起的模式耦合对时间相干损耗的影响。