Suppr超能文献

Modeling the effects of linear shallow-water internal waves on horizontal array coherence.

作者信息

Rouseff Daniel, Lunkov Andrey A

机构信息

Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA.

A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov Street 38, Moscow 119991, Russia.

出版信息

J Acoust Soc Am. 2015 Oct;138(4):2256-65. doi: 10.1121/1.4930954.

Abstract

The coherence length of a horizontal array is the maximum separation between two points where coherent processing gives useful gain when a distant source is at broadside. In shallow water, the coherence length is limited by the environmental variability caused by several relevant oceanographic processes. In the present study, a statistical model is developed that quantifies how one oceanographic process, linear internal waves, affects the coherence length. A key input to the ocean sub-model is the vertically integrated energy density of the internal wave field. The acoustic sub-model is based on the adiabatic normal mode approximation and so should be reasonable for frequencies under 1 kHz. Numerical calculations using environmental data from the Shallow Water 2006 Experiment (SW06) show how the coherence length of individual modes varies with consequent effects on array coherence. The coherence length is shown to be a strong function of where the source and array are positioned in the water column. For a bottom-mounted array above a moderately lossy seabed, the model predicts a coherence length that depends only weakly on range, an effect observed in field experiments.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验