III. Institute of Physics - Biophysics, Georg-August-Universität Göttingen Göttingen, Germany.
Front Comput Neurosci. 2012 Jun 18;6:36. doi: 10.3389/fncom.2012.00036. eCollection 2012.
Conventional synaptic plasticity in combination with synaptic scaling is a biologically plausible plasticity rule that guides the development of synapses toward stability. Here we analyze the development of synaptic connections and the resulting activity patterns in different feed-forward and recurrent neural networks, with plasticity and scaling. We show under which constraints an external input given to a feed-forward network forms an input trace similar to a cell assembly (Hebb, 1949) by enhancing synaptic weights to larger stable values as compared to the rest of the network. For instance, a weak input creates a less strong representation in the network than a strong input which produces a trace along large parts of the network. These processes are strongly influenced by the underlying connectivity. For example, when embedding recurrent structures (excitatory rings, etc.) into a feed-forward network, the input trace is extended into more distant layers, while inhibition shortens it. These findings provide a better understanding of the dynamics of generic network structures where plasticity is combined with scaling. This makes it also possible to use this rule for constructing an artificial network with certain desired storage properties.
传统的突触可塑性与突触缩放相结合是一种合理的可塑性规则,它指导着突触的发展趋于稳定。在这里,我们分析了具有可塑性和缩放功能的不同前馈和递归神经网络中突触连接的发展和产生的活动模式。我们展示了在何种约束下,外部输入到前馈网络中会形成类似于细胞集合的输入轨迹(Hebb,1949),即通过将突触权重增强到比网络其余部分更大的稳定值来增强。例如,弱输入在网络中产生的表示比强输入弱,强输入则在网络的大部分区域产生轨迹。这些过程受到基础连接的强烈影响。例如,当将递归结构(兴奋性环等)嵌入前馈网络时,输入轨迹会扩展到更远的层,而抑制会缩短它。这些发现提供了对具有可塑性和缩放功能的通用网络结构动态的更好理解。这也使得使用该规则来构建具有特定存储属性的人工网络成为可能。