Suppr超能文献

相对粗糙度:用于测试单分形模型适用性的一个指标。

Relative roughness: an index for testing the suitability of the monofractal model.

作者信息

Marmelat Vivien, Torre Kjerstin, Delignières Didier

机构信息

Movement to Health, University Montpellier 1 Montpellier, France.

出版信息

Front Physiol. 2012 Jun 18;3:208. doi: 10.3389/fphys.2012.00208. eCollection 2012.

Abstract

Fractal analyses have become very popular and have been applied on a wide variety of empirical time series. The application of these methods supposes that the monofractal framework can offer a suitable model for the analyzed series. However, this model takes into account a quite specific kind of fluctuations, and we consider that fractal analyses have been often applied to series that were completely outside of its relevance. The problem is that fractal methods can be applied to all types of series, and they always give a result, that one can then erroneously interpret in the context of the monofractal framework. We propose in this paper an easily computable index, the relative roughness (RR), defined as the ratio between local and global variances, that allows to test for the applicability of fractal analyses. We show that RR is confined within a limited range (between 1.21 and 0.12, approximately) for long-range correlated series. We propose some examples of empirical series that have been recently analyzed using fractal methods, but, with respect to their RR, should not have been considered in the monofractal model. An acceptable level of RR, however, is a necessary but not sufficient condition for considering series as long-range correlated. Specific methods should be used in complement for testing for the effective presence of long-range correlations in empirical series.

摘要

分形分析已经变得非常流行,并已应用于各种各样的经验时间序列。这些方法的应用假定单分形框架可以为所分析的序列提供一个合适的模型。然而,这个模型考虑的是一种相当特殊的波动,并且我们认为分形分析常常被应用于完全超出其适用范围的序列。问题在于分形方法可以应用于所有类型的序列,并且它们总会给出一个结果,而人们随后可能会在单分形框架的背景下错误地解释这个结果。在本文中,我们提出了一个易于计算的指标,即相对粗糙度(RR),它被定义为局部方差与全局方差之比,该指标可以用于检验分形分析的适用性。我们表明,对于长程相关序列,RR 被限制在一个有限的范围内(大约在 1.21 和 0.12 之间)。我们给出了一些最近使用分形方法分析过的经验序列的例子,但是就它们的 RR 而言,不应该在单分形模型中考虑这些序列。然而,RR 的可接受水平是将序列视为长程相关的必要但不充分条件。还应该使用特定的方法来补充检验经验序列中长程相关性的实际存在情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57d7/3376770/f7090f78d5c7/fphys-03-00208-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验