Gravelle Jérémy, Avramovic Vanessa, Hallez Loïc, Hihn Jean-Yves, Pollet Bruno G
Green Hydrogen Lab (GH2Lab), Hydrogen Research Institute (HRI), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada.
Université Marie et Louis Pasteur, CNRS UMR 6213 Institut UTINAM, 30 Avenue de l'observatoire, 25009 Besançon Cedex, France.
Ultrason Sonochem. 2025 Jul 27;120:107481. doi: 10.1016/j.ultsonch.2025.107481.
Among water electrolysis systems, alkaline water electrolysers (AWE) are promising for large-scale hydrogen production due to their cost-effective nickel (Ni) electrodes. However, AWE faces challenges, particularly molecular hydrogen and oxygen bubbles shielding on electrode surfaces in the liquid alkaline electrolyte (KOH). Therefore, innovative solutions like ultrasonication and advanced electrode structures are explored as effective methods for bubble removal. This study investigates the hydrogen evolution reaction (HER) under two ultrasonic frequencies (20 kHz and 580 kHz) using planar and porous Ni electrodes on a copper (Cu) substrate. The planar electrode was prepared using a Ni watt bath, while the porous electrode was fabricated using the dynamic hydrogen bubble template (DHBT) method. To further align with industrial conditions, the distance between the electrodes and transducer was maintained between 10 and 15 cm. The study focused on the synergistic effect of ultrasonication and porous electrodes on mass transfer and HER performance. Results show that the porous Ni electrode reduced overpotential by -97 mV, with ultrasonication enhancing this by up to -132 mV. Furthermore, ultrasonication altered the HER mechanism for DHBT Ni, as shown by changes in the Tafel slopes, b (-250 mV/dec vs. -87 mV/dec under ultrasonication and silent conditions respectively). It was also found that the intense convection from acoustic cavitation implosion might influence HER mechanisms by hindering water adsorption at the electrode surface. Finally, the electrode-sonotrode distance was found to be critical to prevent surface degradation at shorter distances (3.5 cm), requiring further optimization for industrial purposes.
在水电解系统中,碱性水电解槽(AWE)因其具有成本效益的镍(Ni)电极而有望用于大规模制氢。然而,AWE面临挑战,特别是在液体碱性电解质(KOH)中电极表面的分子氢和氧气气泡屏蔽问题。因此,探索了超声处理和先进电极结构等创新解决方案作为去除气泡的有效方法。本研究使用铜(Cu)基板上的平面和多孔镍电极,研究了两种超声频率(20kHz和580kHz)下的析氢反应(HER)。平面电极使用镍瓦特镀液制备,而多孔电极使用动态氢气泡模板(DHBT)方法制造。为了进一步符合工业条件,电极与换能器之间的距离保持在10至15厘米之间。该研究重点关注超声处理和多孔电极对传质和HER性能的协同作用。结果表明,多孔镍电极使过电位降低了-97mV,超声处理使其最多增强了-132mV。此外,超声处理改变了DHBT镍的HER机制,如塔菲尔斜率b的变化所示(超声处理和无声条件下分别为-250mV/dec和-87mV/dec)。还发现,声空化内爆产生的强烈对流可能通过阻碍电极表面的水吸附来影响HER机制。最后,发现电极与超声探头的距离对于防止较短距离(3.5厘米)下的表面降解至关重要,需要进一步优化以用于工业目的。