Suppr超能文献

一种新的基于最大后验概率的核分类方法。

A new approach to a maximum à posteriori-based kernel classification method.

机构信息

Department of International Development Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, South 6th Building, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

出版信息

Neural Netw. 2012 Sep;33:247-56. doi: 10.1016/j.neunet.2012.05.007. Epub 2012 Jun 1.

Abstract

This paper presents a new approach to a maximum a posteriori (MAP)-based classification, specifically, MAP-based kernel classification trained by linear programming (MAPLP). Unlike traditional MAP-based classifiers, MAPLP does not directly estimate a posterior probability for classification. Instead, it introduces a kernelized function to an objective function that behaves similarly to a MAP-based classifier. To evaluate the performance of MAPLP, a binary classification experiment was performed with 13 datasets. The results of this experiment are compared with those coming from conventional MAP-based kernel classifiers and also from other state-of-the-art classification methods. It shows that MAPLP performs promisingly against the other classification methods. It is argued that the proposed approach makes a significant contribution to MAP-based classification research; the approach widens the freedom to choose an objective function, it is not constrained to the strict sense Bayesian, and can be solved by linear programming. A substantial advantage of our proposed approach is that the objective function is undemanding, having only a single parameter. This simplicity, thus, allows for further research development in the future.

摘要

本文提出了一种新的最大后验概率(MAP)分类方法,即基于线性规划的 MAP 核分类(MAPLP)。与传统的 MAP 分类器不同,MAPLP 并不直接对分类进行后验概率估计。相反,它在目标函数中引入了核函数,其行为类似于基于 MAP 的分类器。为了评估 MAPLP 的性能,我们在 13 个数据集上进行了二进制分类实验。实验结果与传统的基于 MAP 的核分类器以及其他先进的分类方法进行了比较。结果表明,MAPLP 在分类方法中表现出色。我们认为,该方法对 MAP 分类研究做出了重要贡献;该方法扩大了选择目标函数的自由度,不受严格贝叶斯意义的限制,并且可以通过线性规划来解决。我们提出的方法的一个显著优势是目标函数要求不高,只有一个单一参数。这种简单性,因此,为未来的进一步研究发展提供了可能性。

相似文献

2
A novel kernel-based maximum a posteriori classification method.一种基于核的新型最大后验分类方法。
Neural Netw. 2009 Sep;22(7):977-87. doi: 10.1016/j.neunet.2008.11.005. Epub 2008 Dec 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验