Suppr超能文献

基于特征袋的多分配和视觉词加权的医学图像检索。

Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.

机构信息

Shanghai Institute of Applied Physics, Chinese Academy of Science.

出版信息

IEEE Trans Med Imaging. 2011 Nov;30(11):1996-2011. doi: 10.1109/TMI.2011.2161673. Epub 2011 Aug 18.

Abstract

Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.

摘要

基于特征袋的方法在过去十年中在图像检索和图像分类任务中变得突出。这些方法将图像表示为局部特征的集合,例如图像补丁和具有尺度不变特征变换 (SIFT) 描述符的关键点。为了改进特征袋方法,我们首先将局部描述符的分配建模为贡献函数,然后提出了一种新的多分配策略。假设局部特征可以通过词汇中的邻域视觉词进行重建,可以通过二次规划求解重建权重。然后,这些权重用于构建贡献函数,从而产生一种新的分配方法,称为二次规划 (QP) 分配。我们进一步提出了一种新的视觉词加权方法。通过对应于视觉词的 bin 中的子相似性函数来分析每个视觉词的判别能力。然后,将每个子相似性函数视为弱分类器。通过组合这些弱分类器的提升方法来学习强分类器。相应地学习视觉词的加权因子。我们在医学图像检索任务上评估了所提出的方法。该方法在三个著名的数据集中进行了测试,即 ImageCLEFmed 数据集、304 CT 集和基底细胞癌图像集。实验结果表明,所提出的 QP 分配优于传统的最近邻分配、多分配和软分配,而所提出的基于提升的加权策略优于最新的加权方法,例如词频权重和词频逆文档频率权重。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验