Suppr超能文献

卤代烯烃诱导肾癌发生的机制。

A mechanism of haloalkene-induced renal carcinogenesis.

作者信息

Dekant W, Vamvakas S, Koob M, Köchling A, Kanhai W, Müller D, Henschler D

机构信息

Institute of Toxicology, University of Würzburg, Federal Republic of Germany.

出版信息

Environ Health Perspect. 1990 Aug;88:107-10. doi: 10.1289/ehp.9088107.

Abstract

Several halogenated alkenes are nephrotoxic; some others induce renal tubular adenocarcinomas in rodents after lifelong administration. A bioactivation mechanism accounting for the organ-selective tumor induction has been elucidated: conjugation of the parent compounds with glutathione (GSH), catalyzed by hepatic GSH S-transferases, results in the formation of haloalkyl and halovinyl glutathione S-conjugates. Formation of S-conjugates (identified by NMR and mass spectrometry) could be demonstrated with trichloroethene, tetrachloroethene, hexachlorobutadiene, perfluoropropene, trichlorotrifluoropropene, and dichloroacetylene in incubations with rat liver microsomes and in the isolated perfused rat liver. The GSH conjugates formed are eliminated from the rat liver with the bile and may be translocated to the kidney, intact or after metabolism to the corresponding cysteine S-conjugates that are metabolized in the kidney by renal tubular cysteine conjugate beta-lyase (beta-lyase) to reactive intermediates, most likely thioacylchlorides and thioketenes. Interaction of these potent electrophiles with DNA [demonstrated for intermediates formed from S-(1,2,3,4,4-pentachlorobutadienyl)-L-cysteine] causes mutagenicity in bacteria, genotoxicity in cultured renal cells, and cytotoxicity in kidney cells. As an alternative to beta-lyase-catalyzed cleavage, the cysteine S-conjugates may be acetylated to the corresponding mercapturic acids, which have been identified in urine. The ability of the kidney to concentrate GSH and cysteine S-conjugates and the intensive metabolism of GSH S-conjugates to cysteine S-conjugates in this organ are evidently responsible for the organotropic carcinogenicity.

摘要

几种卤代烯烃具有肾毒性;其他一些卤代烯烃在终生给药后可在啮齿动物中诱发肾小管腺癌。一种解释器官选择性肿瘤诱导的生物活化机制已得到阐明:母体化合物与谷胱甘肽(GSH)的结合,由肝脏谷胱甘肽S-转移酶催化,导致卤代烷基和卤代乙烯基谷胱甘肽S-共轭物的形成。在与大鼠肝微粒体的孵育以及离体灌注的大鼠肝脏中,用三氯乙烯、四氯乙烯、六氯丁二烯、全氟丙烯、三氯三氟丙烯和二氯乙炔可以证明S-共轭物(通过核磁共振和质谱鉴定)的形成。形成的谷胱甘肽共轭物随胆汁从大鼠肝脏中排出,并且可能完整地或在代谢为相应的半胱氨酸S-共轭物后转移到肾脏,后者在肾脏中被肾小管半胱氨酸共轭β-裂解酶(β-裂解酶)代谢为反应性中间体,最有可能是硫酰氯和硫代烯酮。这些强亲电试剂与DNA的相互作用[已证明由S-(1,2,3,4,4-五氯丁二烯基)-L-半胱氨酸形成的中间体]在细菌中引起致突变性,在培养的肾细胞中引起遗传毒性,在肾细胞中引起细胞毒性。作为β-裂解酶催化裂解的替代方法,半胱氨酸S-共轭物可能被乙酰化为相应的硫醚氨酸,已在尿液中鉴定出这些物质。肾脏浓缩谷胱甘肽和半胱氨酸S-共轭物的能力以及该器官中谷胱甘肽S-共轭物向半胱氨酸S-共轭物的强烈代谢显然是器官特异性致癌性的原因。

相似文献

1
A mechanism of haloalkene-induced renal carcinogenesis.卤代烯烃诱导肾癌发生的机制。
Environ Health Perspect. 1990 Aug;88:107-10. doi: 10.1289/ehp.9088107.
2
Glutathione-dependent bioactivation of haloalkenes.卤代烯烃的谷胱甘肽依赖性生物活化作用。
Annu Rev Pharmacol Toxicol. 1998;38:501-37. doi: 10.1146/annurev.pharmtox.38.1.501.

本文引用的文献

1
Differentiation of the mechanisms of oncogenicity of 1,4-dioxane and 1,3-hexachlorobutadiene in the rat.
Toxicol Appl Pharmacol. 1981 Sep 15;60(2):287-300. doi: 10.1016/0041-008x(91)90232-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验