Suppr超能文献

使用对接和模拟技术将转移 RNA 从 A/T 状态转移到 A 位。

Motion of transfer RNA from the A/T state into the A-site using docking and simulations.

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Proteins. 2012 Nov;80(11):2489-500. doi: 10.1002/prot.24131. Epub 2012 Jul 28.

Abstract

The ribosome catalyzes peptidyl transfer reactions at the growing nascent polypeptide chain. Here, we present a structural mechanism for selecting cognate over near-cognate A/T transfer RNA (tRNA). In part, the structural basis for the fidelity of translation relies on accommodation to filter cognate from near-cognate tRNAs. To examine the assembly of tRNAs within the ribonucleic-riboprotein complex, we conducted a series of all-atom molecular dynamics (MD) simulations of the entire solvated 70S Escherichia coli ribosome, along with its associated cofactors, proteins, and messenger RNA (mRNA). We measured the motion of the A/T state of tRNA between initial binding and full accommodation. The mechanism of rejection was investigated. Using novel in-house algorithms, we determined trajectory pathways. Despite the large intersubunit cavity, the available space is limited by the presence of the tRNA, which is equally large. This article describes a "structural gate," formed between helices 71 and 92 on the ribosomal large subunit, which restricts tRNA motion. The gate and the interacting protein, L14, of the 50S ribosome act as steric filters in two consecutive substeps during accommodation, each requiring: (1) sufficient energy contained in the hybrid tRNA kink and (2) sufficient energy in the Watson-Crick base pairing of the codon-anticodon. We show that these barriers act to filter out near-cognate tRNA and promote proofreading of the codon-anticodon. Since proofreading is essential for understanding the fidelity of translation, our model for the dynamics of this process has substantial biomedical implications.

摘要

核糖体在生长的新生多肽链上催化肽酰转移反应。在这里,我们提出了一种选择同源而非近同源 A/T 转移 RNA(tRNA)的结构机制。在某种程度上,翻译保真度的结构基础依赖于适应来筛选同源 tRNA 和近同源 tRNA。为了研究 tRNA 在核糖核蛋白复合物中的组装,我们对整个溶剂化的 70S 大肠杆菌核糖体及其相关辅助因子、蛋白质和信使 RNA(mRNA)进行了一系列全原子分子动力学(MD)模拟。我们测量了 tRNA 在初始结合和完全适应之间的 A/T 状态的运动。研究了排斥机制。使用新的内部算法,我们确定了轨迹路径。尽管亚基间腔很大,但可用空间受到 tRNA 的限制,tRNA 同样大。本文描述了一个“结构门”,它形成在核糖体大亚基的 71 号和 92 号螺旋之间,限制了 tRNA 的运动。门和核糖体 50S 的相互作用蛋白 L14 在适应过程的两个连续亚步骤中充当空间过滤器,每个步骤都需要:(1) 混合 tRNA 拐点中包含的足够能量,以及 (2) 密码子-反密码子的 Watson-Crick 碱基配对中的足够能量。我们表明,这些障碍可用于筛选近同源 tRNA,并促进密码子-反密码子的校对。由于校对对于理解翻译的保真度至关重要,因此我们提出的这个过程动力学模型具有重要的生物医学意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验