Suppr超能文献

使用模拟和网络建模对 Parkin 激活突变进行计算机研究。

In Silico Investigation of Parkin-Activating Mutations Using Simulations and Network Modeling.

机构信息

Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.

Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Road, Jacksonville, FL 32224, USA.

出版信息

Biomolecules. 2024 Mar 19;14(3):365. doi: 10.3390/biom14030365.

Abstract

Complete loss-of-function mutations in the PRKN gene are a major cause of early-onset Parkinson's disease (PD). PRKN encodes the Parkin protein, an E3 ubiquitin ligase that works in conjunction with the ubiquitin kinase PINK1 in a distinct quality control pathway to tag damaged mitochondria for autophagic clearance, i.e., mitophagy. According to previous structural investigations, Parkin protein is typically kept in an inactive conformation via several intramolecular, auto-inhibitory interactions. Here, we performed molecular dynamics simulations (MDS) to provide insights into conformational changes occurring during the de-repression of Parkin and the gain of catalytic activity. We analyzed four different Parkin-activating mutations that are predicted to disrupt certain aspects of its auto-inhibition. All four variants showed greater conformational motions compared to wild-type protein, as well as differences in distances between domain interfaces and solvent-accessible surface area, which are thought to play critical roles as Parkin gains catalytic activity. Our findings reveal that the studied variants exert a notable influence on Parkin activation as they alter the opening of its closed inactive structure, a finding that is supported by recent structure- and cell-based studies. These findings not only helped further characterize the hyperactive variants but overall improved our understanding of Parkin's catalytic activity and nominated targets within Parkin's structure for potential therapeutic designs.

摘要

PRKN 基因完全失活突变是早发性帕金森病(PD)的主要原因。PRKN 编码 Parkin 蛋白,它是一种 E3 泛素连接酶,与泛素激酶 PINK1 一起在一个独特的质量控制途径中协同作用,以标记受损的线粒体进行自噬清除,即线粒体自噬。根据之前的结构研究,Parkin 蛋白通常通过几种分子内的自动抑制相互作用保持在非活性构象。在这里,我们进行了分子动力学模拟(MDS),以深入了解 Parkin 去抑制和获得催化活性过程中发生的构象变化。我们分析了四种不同的 Parkin 激活突变,这些突变预计会破坏其自动抑制的某些方面。与野生型蛋白相比,所有四种变体都显示出更大的构象运动,以及结构域界面之间的距离和溶剂可及表面积的差异,这些差异被认为在 Parkin 获得催化活性时起着关键作用。我们的研究结果表明,所研究的变体对 Parkin 的激活有显著影响,因为它们改变了其封闭的非活性结构的开启,这一发现得到了最近的结构和基于细胞的研究的支持。这些发现不仅有助于进一步表征过度活跃的变体,而且总体上提高了我们对 Parkin 催化活性的理解,并确定了 Parkin 结构内的潜在治疗设计目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2609/10968616/ef654c75dc3f/biomolecules-14-00365-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验