Suppr超能文献

载脂蛋白 E4 脂质结合诱导构象变化的荧光分析。

Fluorescence analysis of the lipid binding-induced conformational change of apolipoprotein E4.

机构信息

Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan.

出版信息

Biochemistry. 2012 Jul 17;51(28):5580-8. doi: 10.1021/bi300672s. Epub 2012 Jul 3.

Abstract

Apolipoprotein (apo) E is thought to undergo conformational changes in the N-terminal helix bundle domain upon lipid binding, modulating its receptor binding activity. In this study, site-specific fluorescence labeling of the N-terminal (S94) and C-terminal (W264 or S290) helices in apoE4 by pyrene maleimide or acrylodan was employed to probe the conformational organization and lipid binding behavior of the N- and C-terminal domains. Guanidine denaturation experiments monitored by acrylodan fluorescence demonstrated the less organized, more solvent-exposed structure of the C-terminal helices compared to the N-terminal helix bundle. Pyrene excimer fluorescence together with gel filtration chromatography indicated that there are extensive intermolecular helix-helix contacts through the C-terminal helices of apoE4. Comparison of increases in pyrene fluorescence upon binding of pyrene-labeled apoE4 to egg phosphatidylcholine small unilamellar vesicles suggests a two-step lipid-binding process; apoE4 initially binds to a lipid surface through the C-terminal helices followed by the slower conformational reorganization of the N-terminal helix bundle domain. Consistent with this, fluorescence resonance energy transfer measurements from Trp residues to acrylodan attached at position 94 demonstrated that upon binding to the lipid surface, opening of the N-terminal helix bundle occurs at the same rate as the increase in pyrene fluorescence of the N-terminal domain. Such a two-step mechanism of lipid binding of apoE4 is likely to apply to mostly phospholipid-covered lipoproteins such as VLDL. However, monitoring pyrene fluorescence upon binding to HDL(3) suggests that not only apoE-lipid interactions but also protein-protein interactions are important for apoE4 binding to HDL(3).

摘要

载脂蛋白 E(apoE)被认为在脂质结合时会在 N 端螺旋束结构域发生构象变化,从而调节其受体结合活性。在这项研究中,通过芘马来酰亚胺或丙烯酰胺对 apoE4 的 N 端(S94)和 C 端(W264 或 S290)螺旋进行了位点特异性荧光标记,以研究 N 端和 C 端结构域的构象组织和脂质结合行为。丙烯酰胺荧光监测的胍变性实验表明,与 N 端螺旋束相比,C 端螺旋的结构较为无序,溶剂暴露程度更高。芘激基荧光与凝胶过滤色谱分析表明,apoE4 的 C 端螺旋之间存在广泛的分子间螺旋-螺旋相互作用。比较结合了芘标记的 apoE4 与卵磷酯小单层囊泡后的芘荧光增加表明存在两步脂质结合过程;apoE4 最初通过 C 端螺旋结合到脂质表面,然后是 N 端螺旋束结构域的较慢构象重排。这与荧光共振能量转移测量结果一致,从色氨酸残基到位于 94 位的丙烯酰胺的转移表明,在结合到脂质表面时,N 端螺旋束的打开与 N 端结构域的芘荧光增加的速度相同。apoE4 的这种两步脂质结合机制可能适用于大多数磷脂覆盖的脂蛋白,如 VLDL。然而,监测结合到 HDL(3) 时的芘荧光表明,apoE-脂质相互作用以及蛋白质-蛋白质相互作用对于 apoE4 与 HDL(3) 的结合都很重要。

相似文献

1
Fluorescence analysis of the lipid binding-induced conformational change of apolipoprotein E4.
Biochemistry. 2012 Jul 17;51(28):5580-8. doi: 10.1021/bi300672s. Epub 2012 Jul 3.
2
Fluorescence study of domain structure and lipid interaction of human apolipoproteins E3 and E4.
Biochim Biophys Acta. 2014 Dec;1841(12):1716-24. doi: 10.1016/j.bbalip.2014.09.019.
4
Examination of lipid-bound conformation of apolipoprotein E4 by pyrene excimer fluorescence.
J Biol Chem. 2005 Apr 15;280(15):14605-10. doi: 10.1074/jbc.M414019200. Epub 2005 Feb 11.
5
Conformational flexibility of the N-terminal domain of apolipoprotein a-I bound to spherical lipid particles.
Biochemistry. 2008 Oct 28;47(43):11340-7. doi: 10.1021/bi801503r. Epub 2008 Oct 2.
6
Molecular basis for the differences in lipid and lipoprotein binding properties of human apolipoproteins E3 and E4.
Biochemistry. 2010 Dec 28;49(51):10881-9. doi: 10.1021/bi1017655. Epub 2010 Dec 3.
7
The LDL receptor binding domain of apolipoprotein E directs the relative orientation of its C-terminal segment in reconstituted nascent HDL.
Biochim Biophys Acta Biomembr. 2021 Jul 1;1863(7):183618. doi: 10.1016/j.bbamem.2021.183618. Epub 2021 Apr 6.

引用本文的文献

2
The LDL receptor binding domain of apolipoprotein E directs the relative orientation of its C-terminal segment in reconstituted nascent HDL.
Biochim Biophys Acta Biomembr. 2021 Jul 1;1863(7):183618. doi: 10.1016/j.bbamem.2021.183618. Epub 2021 Apr 6.
3
Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I.
J Biol Chem. 2019 Sep 6;294(36):13515-13524. doi: 10.1074/jbc.RA119.008000. Epub 2019 Jul 24.
4
A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain-domain interactions.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6292-6297. doi: 10.1073/pnas.1705080114. Epub 2017 May 30.
5
Membrane Binding and Oligomerization of the Lipopeptide A54145 Studied by Pyrene Fluorescence.
Biophys J. 2016 Sep 20;111(6):1267-1277. doi: 10.1016/j.bpj.2016.07.018.
6
ApoE: In Vitro Studies of a Small Molecule Effector.
Biochemistry. 2016 May 10;55(18):2613-21. doi: 10.1021/acs.biochem.6b00324. Epub 2016 Apr 27.
7
Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes.
J Biol Chem. 2015 Aug 21;290(34):20947-20959. doi: 10.1074/jbc.M115.664227. Epub 2015 Jul 14.
8
Kinetics of lipid mixing between bicelles and nanolipoprotein particles.
Biophys Chem. 2015 Feb;197:47-52. doi: 10.1016/j.bpc.2015.01.006. Epub 2015 Jan 23.
9
Fluorescence study of domain structure and lipid interaction of human apolipoproteins E3 and E4.
Biochim Biophys Acta. 2014 Dec;1841(12):1716-24. doi: 10.1016/j.bbalip.2014.09.019.

本文引用的文献

1
The structure of dimeric apolipoprotein A-IV and its mechanism of self-association.
Structure. 2012 May 9;20(5):767-79. doi: 10.1016/j.str.2012.02.020.
2
Pyrene: a probe to study protein conformation and conformational changes.
Molecules. 2011 Sep 14;16(9):7909-35. doi: 10.3390/molecules16097909.
3
Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization.
J Biol Chem. 2011 Nov 4;286(44):38570-38582. doi: 10.1074/jbc.M111.260422. Epub 2011 Sep 13.
4
Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions.
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14813-8. doi: 10.1073/pnas.1106420108. Epub 2011 Aug 22.
5
Dissociation of apolipoprotein E oligomers to monomer is required for high-affinity binding to phospholipid vesicles.
Biochemistry. 2011 Apr 5;50(13):2550-8. doi: 10.1021/bi1020106. Epub 2011 Feb 28.
6
Molecular basis for the differences in lipid and lipoprotein binding properties of human apolipoproteins E3 and E4.
Biochemistry. 2010 Dec 28;49(51):10881-9. doi: 10.1021/bi1017655. Epub 2010 Dec 3.
7
The association−dissociation behavior of the ApoE proteins: kinetic and equilibrium studies.
Biochemistry. 2010 Nov 9;49(44):9533-41. doi: 10.1021/bi101407m.
8
Apolipoprotein E: from lipid transport to neurobiology.
Prog Lipid Res. 2011 Jan;50(1):62-74. doi: 10.1016/j.plipres.2010.09.001. Epub 2010 Sep 18.
10
VLDL lipolysis products increase VLDL fluidity and convert apolipoprotein E4 into a more expanded conformation.
J Lipid Res. 2010 Jun;51(6):1273-83. doi: 10.1194/jlr.M000406. Epub 2009 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验