Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
Biochemistry. 2012 Jul 17;51(28):5580-8. doi: 10.1021/bi300672s. Epub 2012 Jul 3.
Apolipoprotein (apo) E is thought to undergo conformational changes in the N-terminal helix bundle domain upon lipid binding, modulating its receptor binding activity. In this study, site-specific fluorescence labeling of the N-terminal (S94) and C-terminal (W264 or S290) helices in apoE4 by pyrene maleimide or acrylodan was employed to probe the conformational organization and lipid binding behavior of the N- and C-terminal domains. Guanidine denaturation experiments monitored by acrylodan fluorescence demonstrated the less organized, more solvent-exposed structure of the C-terminal helices compared to the N-terminal helix bundle. Pyrene excimer fluorescence together with gel filtration chromatography indicated that there are extensive intermolecular helix-helix contacts through the C-terminal helices of apoE4. Comparison of increases in pyrene fluorescence upon binding of pyrene-labeled apoE4 to egg phosphatidylcholine small unilamellar vesicles suggests a two-step lipid-binding process; apoE4 initially binds to a lipid surface through the C-terminal helices followed by the slower conformational reorganization of the N-terminal helix bundle domain. Consistent with this, fluorescence resonance energy transfer measurements from Trp residues to acrylodan attached at position 94 demonstrated that upon binding to the lipid surface, opening of the N-terminal helix bundle occurs at the same rate as the increase in pyrene fluorescence of the N-terminal domain. Such a two-step mechanism of lipid binding of apoE4 is likely to apply to mostly phospholipid-covered lipoproteins such as VLDL. However, monitoring pyrene fluorescence upon binding to HDL(3) suggests that not only apoE-lipid interactions but also protein-protein interactions are important for apoE4 binding to HDL(3).
载脂蛋白 E(apoE)被认为在脂质结合时会在 N 端螺旋束结构域发生构象变化,从而调节其受体结合活性。在这项研究中,通过芘马来酰亚胺或丙烯酰胺对 apoE4 的 N 端(S94)和 C 端(W264 或 S290)螺旋进行了位点特异性荧光标记,以研究 N 端和 C 端结构域的构象组织和脂质结合行为。丙烯酰胺荧光监测的胍变性实验表明,与 N 端螺旋束相比,C 端螺旋的结构较为无序,溶剂暴露程度更高。芘激基荧光与凝胶过滤色谱分析表明,apoE4 的 C 端螺旋之间存在广泛的分子间螺旋-螺旋相互作用。比较结合了芘标记的 apoE4 与卵磷酯小单层囊泡后的芘荧光增加表明存在两步脂质结合过程;apoE4 最初通过 C 端螺旋结合到脂质表面,然后是 N 端螺旋束结构域的较慢构象重排。这与荧光共振能量转移测量结果一致,从色氨酸残基到位于 94 位的丙烯酰胺的转移表明,在结合到脂质表面时,N 端螺旋束的打开与 N 端结构域的芘荧光增加的速度相同。apoE4 的这种两步脂质结合机制可能适用于大多数磷脂覆盖的脂蛋白,如 VLDL。然而,监测结合到 HDL(3) 时的芘荧光表明,apoE-脂质相互作用以及蛋白质-蛋白质相互作用对于 apoE4 与 HDL(3) 的结合都很重要。