Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110;
Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6292-6297. doi: 10.1073/pnas.1705080114. Epub 2017 May 30.
Relative to the apolipoprotein E (apoE) E3 allele of the gene, apoE4 strongly increases the risk for the development of late-onset Alzheimer's disease. However, apoE4 differs from apoE3 by only a single amino acid at position 112, which is arginine in apoE4 and cysteine in apoE3. It remains unclear why apoE3 and apoE4 are functionally different. Described here is a proposal for understanding the functional differences between these two isoforms with respect to lipid binding. A mechanism is proposed that is based on the full-length monomeric structure of the protein, on hydrogen-deuterium exchange mass spectrometry data, and on the role of intrinsically disordered regions to control protein motions. It is proposed that lipid binds between the N-terminal and C-terminal domains and that separation of the two domains, along with the presence of intrinsically disordered regions, controls this process. The mechanism explains why apoE3 differs from apoE4 with respect to different lipid-binding specificities, why lipid increases the binding of apoE to its receptor, and why specific residues are conserved.
与基因中的载脂蛋白 E(apoE)E3 等位基因相比,apoE4 强烈增加了晚发性阿尔茨海默病的发病风险。然而,apoE4 与 apoE3 仅在第 112 位的一个氨基酸上有所不同,apoE4 中的氨基酸是精氨酸,apoE3 中的氨基酸是半胱氨酸。目前尚不清楚为什么 apoE3 和 apoE4 在功能上有所不同。本文提出了一种理解这两种同工型在脂质结合方面的功能差异的方法。该方法基于蛋白质的全长单体结构、氢氘交换质谱数据以及无序区域在控制蛋白质运动中的作用。该方法提出脂质在 N 端和 C 端结构域之间结合,并且两个结构域的分离以及无序区域的存在控制着这个过程。该机制解释了为什么 apoE3 在不同的脂质结合特异性方面与 apoE4 不同,为什么脂质增加 apoE 与其受体的结合,以及为什么特定残基被保守。