University of Minnesota, Minneapolis-St. Paul, Minnesota, USA.
Environ Sci Technol. 2012 Aug 7;46(15):8484-92. doi: 10.1021/es300162u. Epub 2012 Jul 10.
We used an ensemble of aircraft measurements with the GEOS-Chem chemical transport model to constrain present-day North American ethanol sources, and gauge potential long-range impacts of increased ethanol fuel use. We find that current ethanol emissions are underestimated by 50% in Western North America, and overestimated by a factor of 2 in the east. Our best estimate for year-2005 North American ethanol emissions is 670 GgC/y, with 440 GgC/y from the continental U.S. We apply these optimized source estimates to investigate two scenarios for increased ethanol fuel use in the U.S.: one that assumes a complete transition from gasoline to E85 fuel, and one tied to the biofuel requirements of the U.S. Energy Indepence and Security Act (EISA). For both scenarios, increased ethanol emissions lead to higher atmospheric acetaldehyde concentrations (by up to 14% during winter for the All-E85 scenario and 2% for the EISA scenario) and an associated shift in reactive nitrogen partitioning reflected by an increase in the peroxyacetyl nitrate (PAN) to NO(y) ratio. The largest relative impacts occur during fall, winter, and spring because of large natural emissions of ethanol and other organic compounds during summer. Projected changes in atmospheric PAN reflect a balance between an increased supply of peroxyacetyl radicals from acetaldehyde oxidation, and the lower NO(x) emissions for E85 relative to gasoline vehicles. The net effect is a general PAN increase in fall through spring, and a weak decrease over the U.S. Southeast and the Atlantic Ocean during summer. Predicted NO(x) concentrations decrease in surface air over North America (by as much 5% in the All-E85 scenario). Downwind of North America this effect is counteracted by higher NO(x) export efficiency driven by increased PAN production and transport. From the point of view of NO(x) export from North America, the increased PAN formation associated with E85 fuel use thus acts to offset the associated lower NO(x) emissions.
我们利用一组飞机测量数据和 GEOS-Chem 化学输送模型来约束当前北美的乙醇源,并评估增加乙醇燃料使用的潜在远距离影响。我们发现,目前西半球的乙醇排放量被低估了 50%,而东半球则被高估了 2 倍。我们对 2005 年北美的乙醇排放量的最佳估计值为 670 GgC/y,其中 440 GgC/y 来自美国大陆。我们应用这些优化后的源估计值来研究美国增加乙醇燃料使用的两种情景:一种假设从汽油完全过渡到 E85 燃料,另一种与美国能源独立和安全法案(EISA)的生物燃料要求挂钩。对于这两种情景,增加的乙醇排放导致大气乙醛浓度升高(对于所有 E85 情景,冬季升高 14%,对于 EISA 情景升高 2%),并导致活性氮分配的变化,反映为过氧乙酰硝酸盐(PAN)与 NO(y) 的比例增加。由于夏季乙醇和其他有机化合物的大量自然排放,最大的相对影响发生在秋季、冬季和春季。大气 PAN 的预计变化反映了乙醛氧化产生的过氧乙酰基自由基供应增加,以及 E85 相对于汽油车的 NO(x) 排放量减少之间的平衡。结果是秋季到春季 PAN 普遍增加,夏季北美东南部和大西洋上空 PAN 略有减少。北美地表空气中的 NO(x) 浓度下降(在所有 E85 情景中下降 5%)。在北美下风处,由于 PAN 产量和运输增加导致的更高的 NO(x) 出口效率,抵消了这一效应。从北美的 NO(x) 出口角度来看,与 E85 燃料使用相关的增加的 PAN 形成因此起到了抵消相关的较低的 NO(x) 排放的作用。