Suppr超能文献

利用对流层排放光谱仪(TES)卫星传感器的观测数据量化全球陆地甲醇排放量。

Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor.

作者信息

Wells K C, Millet D B, Cady-Pereira K E, Shephard M W, Henze D K, Bousserez N, Apel E C, de Gouw J, Warneke C, Singh H B

机构信息

Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA.

Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA.

出版信息

Atmos Chem Phys. 2014 Mar;14(5):2555-2570. doi: 10.5194/acp-14-2555-2014. Epub 2014 Mar 13.

Abstract

We employ new global space-based measurements of atmospheric methanol from the Tropospheric Emission Spectrometer (TES) with the adjoint of the GEOS-Chem chemical transport model to quantify terrestrial emissions of methanol to the atmosphere. Biogenic methanol emissions in the model are based on version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1), using leaf area data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOS-5 assimilated meteorological fields. We first carry out a pseudo observation test to validate the overall approach, and find that the TES sampling density is sufficient to accurately quantify regional- to continental-scale methanol emissions using this method. A global inversion of two years of TES data yields an optimized annual global surface flux of 122 Tg yr (including biogenic, pyrogenic, and anthropogenic sources), an increase of 60 % from the a priori global flux of 76 Tg yr. Global terrestrial methanol emissions are thus nearly 25 % those of isoprene (540 Tg yr), and are comparable to the combined emissions of all anthropogenic volatile organic compounds (100-200 Tg yr). Our a posteriori terrestrial methanol source leads to a strong improvement of the simulation relative to an ensemble of airborne observations, and corroborates two other recent top-down estimates (114-120 Tg yr) derived using in situ and space-based measurements. Inversions testing the sensitivity of optimized fluxes to model errors in OH, dry deposition, and oceanic uptake of methanol, as well as to the assumed a priori constraint, lead to global fluxes ranging from 118 to 126 Tg yr. The TES data imply a relatively modest revision of model emissions over most of the tropics, but a significant upward revision in midlatitudes, particularly over Europe and North America. We interpret the inversion results in terms of specific source types using the methanol : CO correlations measured by TES, and find that biogenic emissions are overestimated relative to biomass burning and anthropogenic emissions in central Africa and southeastern China, while they are underestimated in regions such as Brazil and the US. Based on our optimized emissions, methanol accounts for > 25 % of the photochemical source of CO and HCHO over many parts of the northern extratropics during springtime, and contributes ~6 % of the global secondary source of those compounds annually.

摘要

我们利用对流层发射光谱仪(TES)对大气甲醇进行新的全球天基测量,并结合GEOS-Chem化学传输模型的伴随模型,来量化陆地向大气排放的甲醇。模型中的生物源甲醇排放基于自然气体和气溶胶排放模型(MEGANv2.1)的2.1版本,使用了美国国家航空航天局中分辨率成像光谱仪(MODIS)的叶面积数据和GEOS-5同化气象场数据。我们首先进行了一次伪观测测试以验证整体方法,发现TES的采样密度足以使用此方法准确量化区域到大陆尺度的甲醇排放。对两年的TES数据进行全球反演得出优化后的全球年地表通量为122太克/年(包括生物源、火生源和人为源),比先验全球通量76太克/年增加了60%。因此,全球陆地甲醇排放量约为异戊二烯排放量(约540太克/年)的25%,与所有人为挥发性有机化合物的综合排放量(约100 - 200太克/年)相当。相对于机载观测集合,我们的后验陆地甲醇源使模拟有了显著改进,并证实了另外两项近期使用原位和天基测量得出的自上而下的估计值(114 - 120太克/年)。对优化通量对OH、干沉降和甲醇海洋吸收中的模型误差以及假定的先验约束的敏感性进行反演测试,得出全球通量范围为118至126太克/年。TES数据表明,在热带大部分地区模型排放的修订相对较小,但在中纬度地区有显著的向上修订,特别是在欧洲和北美。我们利用TES测量的甲醇与CO的相关性,根据特定源类型来解释反演结果,发现在中非和中国东南部,相对于生物质燃烧和人为排放,生物源排放被高估,而在巴西和美国等地区则被低估。基于我们优化后的排放量,在春季,甲醇在北温带许多地区的光化学CO和HCHO源中占比超过25%,并且每年对这些化合物的全球二次源贡献约6%。

相似文献

本文引用的文献

3
Atmospheric deposition of methanol over the Atlantic Ocean.大气中甲醇在大西洋的沉降。
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20034-9. doi: 10.1073/pnas.1317840110. Epub 2013 Nov 25.
6
Efficient atmospheric cleansing of oxidized organic trace gases by vegetation.植被高效清除氧化态有机痕量气体。
Science. 2010 Nov 5;330(6005):816-9. doi: 10.1126/science.1192534. Epub 2010 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验