Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
Insect Biochem Mol Biol. 2012 Sep;42(9):699-707. doi: 10.1016/j.ibmb.2012.06.003. Epub 2012 Jun 23.
Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Culex quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in Escherichia coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10× expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to C. quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised from the allele used in the reporter assay through fusion PCR, expression was unaffected, indicating that the TE has no direct role in resistance and hence that CuRE1 is acting only as a marker of an as yet unidentified regulatory motif in the association analysis. This suggests that a re-evaluation of the assumption that TEs contribute regulatory motifs involved in gene expression may be necessary.
虽然细胞色素 P450(CYP450)酶在对杀虫剂具有抗性的蚊子中经常被上调,但尚未确定与野生种群相关的驱动这些表达差异的调节基序。转座元件(TEs)通常在上游富集于那些与杀虫剂抗性相关的 CYP450 基因,这导致人们假设它们提供了直接构成抗性表型的调节基序。CuRE1(Culex 重复元件 1)转座元件的一部分位于 CYP9M10 的上游,CYP9M10 先前被发现在 ISOP450 品系的库蚊幼虫对氯菊酯的抗性中起作用,但在易感品系的等效基因组区域中不存在。通过在大肠杆菌中表达 CYP9M10,我们现在已经证明了时间和 NADPH 依赖性的氯菊酯代谢,这是确认其在代谢抗性中的作用的前提条件,并且通过 qPCR 表明,与易感品系相比,ISOP450 中的 CYP9M10 表达超过 20 倍。在荧光报告测定中,与来自易感品系的等效区域(缺乏 CuRE1)相比,ISOP450 中 CYP9M10 的上游区域驱动了 10 倍的表达。与基因表达倍数变化的紧密对应表明,包括 CuRE1 的上游区域是参与抗性的顺式调节元件。整个撒哈拉以南非洲地区仅发现一个携带 CuRE1 的等位基因,与抗性品系中的携带 CuRE1 的等位基因相同,而在非 CuRE1 等位基因中则存在多样性。这表明存在单一起源和随后的选择性优势传播。可以使用简单的诊断方法检测到 CuRE1。当应用于来自加纳的库蚊幼虫时,我们已经证明了在多个田间地点与氯菊酯抗性存在显著关联(平均优势比=3.86),表明该标记与蚊虫的自然种群有关。然而,当通过融合 PCR 从报告测定中使用的等位基因中切除 CuRE1 时,表达不受影响,表明 TE 没有直接参与抗性,因此 CuRE1 仅作为关联分析中未识别的调节基序的标记。这表明需要重新评估转座元件是否有助于基因表达的调节基序的假设。