Suppr超能文献

基于高阶奇异值分解的图像去噪。

Image denoising using the higher order singular value decomposition.

机构信息

DA-IICT, Post Bag No. 4, Near Indroda Circle, Gandhinagar 382007, Gujarat, India.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Apr;35(4):849-62. doi: 10.1109/TPAMI.2012.140.

Abstract

In this paper, we propose a very simple and elegant patch-based, machine learning technique for image denoising using the higher order singular value decomposition (HOSVD). The technique simply groups together similar patches from a noisy image (with similarity defined by a statistically motivated criterion) into a 3D stack, computes the HOSVD coefficients of this stack, manipulates these coefficients by hard thresholding, and inverts the HOSVD transform to produce the final filtered image. Our technique chooses all required parameters in a principled way, relating them to the noise model. We also discuss our motivation for adopting the HOSVD as an appropriate transform for image denoising. We experimentally demonstrate the excellent performance of the technique on grayscale as well as color images. On color images, our method produces state-of-the-art results, outperforming other color image denoising algorithms at moderately high noise levels. A criterion for optimal patch-size selection and noise variance estimation from the residual images (after denoising) is also presented.

摘要

在本文中,我们提出了一种非常简单优雅的基于补丁的机器学习技术,用于使用高阶奇异值分解(HOSVD)对图像进行去噪。该技术通过统计启发式准则将相似的噪声图像块(相似性定义为)组合成一个 3D 堆栈,计算此堆栈的 HOSVD 系数,通过硬阈值处理操纵这些系数,并反转 HOSVD 变换以生成最终的滤波图像。我们的技术以一种有原则的方式选择所有必需的参数,将它们与噪声模型联系起来。我们还讨论了我们采用 HOSVD 作为图像去噪合适变换的动机。我们在灰度图像和彩色图像上进行了实验,证明了该技术的卓越性能。在彩色图像上,我们的方法在中等高噪声水平下,性能优于其他彩色图像去噪算法。还提出了一种用于从(去噪后的)残差图像中选择最佳补丁大小和噪声方差的准则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验