Department of Mathematics and Statistics, University of New Mexico, Albuquerque, 87131-1141, USA.
Bull Math Biol. 2012 Aug;74(8):1857-911. doi: 10.1007/s11538-012-9738-9. Epub 2012 Jun 26.
Current models propose that the plasma membrane of animal cells is composed of heterogeneous and dynamic microdomains known variously as cytoskeletal corrals, lipid rafts and protein islands. Much of the experimental evidence for these membrane compartments is indirect. Recently, live cell single particle tracking studies using quantum dot-labeled IgE bound to its high affinity receptor FcϵRI, provided direct evidence for the confinement of receptors within micrometer-scale cytoskeletal corrals. In this study, we show that an innovative time-series analysis of single particle tracking data for the high affinity IgE receptor, FcϵRI, on mast cells provides substantial quantitative information about the submicrometer organization of the membrane. The analysis focuses on the probability distribution function of the lengths of the jumps in the positions of the quantum dots labeling individual IgE FcϵRI complexes between frames in movies of their motion. Our results demonstrate the presence, within the micrometer-scale cytoskeletal corrals, of smaller subdomains that provide an additional level of receptor confinement. There is no characteristic size for these subdomains; their size varies smoothly from a few tens of nanometers to a over a hundred nanometers. In QD-IGE labeled unstimulated cells, jumps of less than 70 nm predominate over longer jumps. Addition of multivalent antigen to crosslink the QD-IgE-FcϵRI complexes causes a rapid slowing of receptor motion followed by a long tail of mostly jumps less than 70 nm. The reduced receptor mobility likely reflects both the membrane heterogeneity revealed by the confined motion of the monomeric receptor complexes and the antigen-induced cross linking of these complexes into dimers and higher oligomers. In both cases, the probability distribution of the jump lengths is well fit, from 10 nm to over 100 nm, by a novel power law. The fit for short jumps suggests that the motion of the quantum dots can be modeled as diffusion in a fractal space of dimension less than two.
当前的模型提出,动物细胞的质膜由不同的和动态的微区组成,这些微区分别被称为细胞骨架围笼、脂质筏和蛋白质岛。这些膜隔室的大部分实验证据都是间接的。最近,使用量子点标记与高亲和力受体 FcεRI 结合的 IgE 的活细胞单颗粒跟踪研究为受体在微米级细胞骨架围笼内的限制提供了直接证据。在这项研究中,我们表明,对肥大细胞上高亲和力 IgE 受体 FcεRI 的单颗粒跟踪数据进行创新性的时间序列分析,为膜的亚微米结构提供了大量定量信息。该分析集中在单个 IgE FcεRI 复合物的量子点标记的位置的位置跟踪数据的长度的跳跃的概率分布函数上,这些数据在其运动的电影的帧之间。我们的结果表明,在微米级细胞骨架围笼内,存在更小的亚区,这些亚区提供了受体限制的额外水平。这些亚区没有特征尺寸;它们的尺寸从几十纳米到一百多纳米平滑变化。在未刺激的细胞中用 QD-IGE 标记时,小于 70nm 的跳跃优先于更长的跳跃。添加多价抗原交联 QD-IgE-FcεRI 复合物会导致受体运动迅速减慢,随后主要是小于 70nm 的跳跃的长尾。受体迁移率的降低可能反映了两个方面:单体受体复合物受限运动所揭示的膜异质性,以及抗原诱导这些复合物交联成二聚体和更高的寡聚体。在这两种情况下,跳跃长度的概率分布都可以很好地拟合,从 10nm 到超过 100nm,由一个新的幂律。对于短跳跃的拟合表明,量子点的运动可以模拟为分形空间中的扩散,分形空间的维度小于二。