Institute of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany.
J Biol Chem. 2012 Aug 17;287(34):28362-77. doi: 10.1074/jbc.M111.335679. Epub 2012 Jun 26.
CXCL12 signaling through G protein-coupled CXCR4 regulates cell migration during ontogenesis and disease states including cancer and inflammation. The second CXCL12-receptor CXCR7 modulates the CXCL12/CXCR4 pathway by acting as a CXCL12 scavenger and exerts G protein-independent functions. Given the distinct properties of CXCR4 and CXCR7, we hypothesized that the distinct C-terminal domains differently regulate receptor trafficking and stability. Here, we examined epitope-tagged wild type and C-terminal mutant receptors in human embryonic kidney cells (HEK293) with respect to trafficking, stability, (125)I-CXCL12 degradation, and G protein-coupling. The 24 CXCR7 C-terminal residues were sufficient to promote rapid spontaneous internalization. Replacement of the CXCR7 C terminus with that of CXCR4 (CXCR7-4tail mutant) abolished spontaneous internalization but permitted ligand-induced internalization and phosphorylation at the heterologous domain. The reverse tail-swap caused ligand-independent internalization of the resulting CXCR4-7tail mutant. Receptor-mediated (125)I-CXCL12 uptake and release of (125)I-CXCL12 degradation products were accelerated with receptors bearing the CXCR7 C terminus and impaired after conversion of CXCR7 C-terminal serine/threonine residues into alanines. C-terminal lysine residues were dispensable for plasma membrane targeting and the CXCL12 scavenger function but involved in constitutive degradation of CXCR7. Although the CXCR7 C terminus abolished G protein coupling in the CXCR4-7tail mutant, replacement of the CXCR7 C terminus, CXCR7 second intracellular loop, or both domains with the corresponding CXCR4 domain did not result in a G protein-coupled CXCR7 chimera. Taken together, we provide evidence that the CXCR7 C terminus influences the ligand-uptake/degradation rate, G protein coupling, and receptor stability. Regulatory pathways targeting CXCR7 C-terminal serine/threonine sites may control the CXCL12 scavenger activity of CXCR7.
CXCL12 通过 G 蛋白偶联的 CXCR4 信号传导调节细胞迁移,包括在发育过程中和癌症、炎症等疾病状态下的迁移。第二个 CXCL12 受体 CXCR7 通过充当 CXCL12 的清除剂来调节 CXCL12/CXCR4 途径,并发挥 G 蛋白非依赖性功能。鉴于 CXCR4 和 CXCR7 的不同特性,我们假设不同的 C 末端结构域以不同的方式调节受体运输和稳定性。在这里,我们在人胚肾细胞(HEK293)中检查了带有表位标签的野生型和 C 末端突变受体,以研究其运输、稳定性、(125)I-CXCL12 降解和 G 蛋白偶联。CXCR7 的 24 个 C 末端残基足以促进快速自发内化。用 CXCR4 的 C 末端(CXCR7-4tail 突变体)取代 CXCR7 的 C 末端会消除自发内化,但允许配体诱导的内化和异源结构域的磷酸化。相反的尾部交换导致所得的 CXCR4-7tail 突变体发生配体非依赖性内化。具有 CXCR7 C 末端的受体加速了受体介导的(125)I-CXCL12 摄取和(125)I-CXCL12 降解产物的释放,而将 CXCR7 C 末端丝氨酸/苏氨酸残基转化为丙氨酸后则损害了受体功能。C 末端赖氨酸残基对于质膜靶向和 CXCL12 清除剂功能不是必需的,但参与了 CXCR7 的组成性降解。虽然 CXCR7 C 末端在 CXCR4-7tail 突变体中消除了 G 蛋白偶联,但用相应的 CXCR4 结构域取代 CXCR7 C 末端、CXCR7 第二细胞内环或这两个结构域都不会导致 G 蛋白偶联的 CXCR7 嵌合体。总之,我们提供的证据表明,CXCR7 C 末端影响配体摄取/降解率、G 蛋白偶联和受体稳定性。靶向 CXCR7 C 末端丝氨酸/苏氨酸位点的调节途径可能控制 CXCR7 的 CXCL12 清除活性。