Chen Qiuyan, Schafer Christopher T, Mukherjee Somnath, Gustavsson Martin, Agrawal Parth, Yao Xin-Qiu, Kossiakoff Anthony A, Handel Tracy M, Tesmer John J G
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA.
bioRxiv. 2023 Jul 19:2023.07.18.549504. doi: 10.1101/2023.07.18.549504.
Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.
非典型趋化因子受体3(ACKR3,也称为CXCR7)是一种清道夫受体,可调节趋化因子CXCL12的细胞外水平,以维持其伴侣G蛋白偶联受体(GPCR)CXCR4的反应性。ACKR3值得注意,因为它不与G蛋白偶联,而是完全偏向于抑制蛋白。我们之前的研究表明,GRK2和GRK5在ACKR3羧基末端尾巴上安装了不同的磷酸盐分布(或“条形码”),但这些独特的条形码如何驱动不同的细胞结果尚不清楚。也不知道抑制蛋白2(Arr2)和3(Arr3)是否以不同的方式与这些条形码结合。在这里,我们报告了与被GRK2或GRK5磷酸化的ACKR3形成复合物的Arr2和Arr3的冷冻电子显微镜结构。出乎意料的是,与先前报道的“核心”GPCR-抑制蛋白复合物不同,Arr2和3的指状环直接插入去污剂/膜中,而不是ACKR3的跨膜核心。磷酸化条形码与受体跨膜核心之间的距离调节抑制蛋白的相互作用模式,在GRK5位点的紧密复合物和GRK2位点的主要是异质性“仅尾巴”复合物之间交替。Arr2和3相对于ACKR3的核心以不同的角度结合,这可能是由于它们C边缘环处膜/胶束锚定的差异。我们的结构研究得益于Fab7,这是一种新型Fab,它在激活状态下结合Arr2和3,而与受体或磷酸化状态无关,使其成为帮助确定任何天然GPCR-抑制蛋白复合物结构的潜在有用工具。这些结构为不同的磷酸化条形码和抑制蛋白异构体如何全局影响受体-抑制蛋白复合物的构型提供了前所未有的见解。这些差异可能促进独特的下游细胞内相互作用和细胞反应。我们的结构还表明,ACKR3对抑制蛋白的100%偏向是由抑制蛋白而非G蛋白结合GRK磷酸化的ACKR3的能力驱动的,即使它们被排除在受体细胞质结合口袋之外。