Suppr超能文献

Pulsatile pressure and flow in the skeletal muscle microcirculation.

作者信息

Lee S Y, Schmid-Schönbein G W

机构信息

Department of AMES-Bioengineering, University of California, San Diego, La Jolla 92093.

出版信息

J Biomech Eng. 1990 Nov;112(4):437-43. doi: 10.1115/1.2891208.

Abstract

Although blood flow in the microcirculation of the rat skeletal muscle has negligible inertia forces with very low Reynolds number and Womersley parameter, time-dependent pressure and flow variations can be observed. Such phenomena include, for example, arterial flow overshoot following a step arterial pressure, a gradual arterial pressure reduction for a step flow, or hysteresis between pressure and flow when a pulsatile pressure is applied. Arterial and venous flows do not follow the same time course during such transients. A theoretical analysis is presented for these phenomena using a microvessel with distensible viscoelastic walls and purely viscous flow subject to time variant arterial pressures. The results indicate that the vessel distensibility plays an important role in such time-dependent microvascular flow and the effects are of central physiological importance during normal muscle perfusion. In-vivo whole organ pressure-flow data in the dilated rat gracilis muscle agree in the time course with the theoretical predictions. Hemodynamic impedances of the skeletal muscle microcirculation are investigated for small arterial and venous pressure amplitudes superimposed on an initial steady flow and pressure drop along the vessel.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验