Dabrowska Dorota M
University of California, USA.
Int J Biostat. 2012 Jun 22;8(1):Article 15. doi: 10.1515/1557-4679.1233.
Semi-Markov and modulated renewal processes provide a large class of multi-state models which can be used for analysis of longitudinal failure time data. In biomedical applications, models of this kind are often used to describe evolution of a disease and assume that patient may move among a finite number of states representing different phases in the disease progression. Several authors proposed extensions of the proportional hazard model for regression analysis of these processes. In this paper, we consider a general class of censored semi-Markov and modulated renewal processes and propose use of transformation models for their analysis. Special cases include modulated renewal processes with interarrival times specified using transformation models, and semi-Markov processes with with one-step transition probabilities defined using copula-transformation models. We discuss estimation of finite and infinite dimensional parameters and develop an extension of the Gaussian multiplier method for setting confidence bands for transition probabilities and related parameters. A transplant outcome data set from the Center for International Blood and Marrow Transplant Research is used for illustrative purposes.
半马尔可夫过程和调制更新过程提供了一大类多状态模型,可用于分析纵向失效时间数据。在生物医学应用中,这类模型常被用于描述疾病的演变,并假设患者可能在代表疾病进展不同阶段的有限数量状态之间移动。几位作者提出了比例风险模型的扩展,用于这些过程的回归分析。在本文中,我们考虑一类一般的删失半马尔可夫过程和调制更新过程,并提出使用变换模型对其进行分析。特殊情况包括使用变换模型指定到达间隔时间的调制更新过程,以及使用copula变换模型定义一步转移概率的半马尔可夫过程。我们讨论有限维和无限维参数的估计,并开发高斯乘数法的扩展,用于设置转移概率和相关参数的置信带。来自国际血液和骨髓移植研究中心的移植结果数据集用于说明目的。