Suppr超能文献

受自然启发的元启发式算法在跨学科解决优化问题中的应用。

Applications of nature-inspired metaheuristic algorithms for tackling optimization problems across disciplines.

作者信息

Cui Elvis Han, Zhang Zizhao, Chen Culsome Junwen, Wong Weng Kee

机构信息

Department of Biostatistics, University of California, Los Angeles, CA, 90095, USA.

Alibaba Group, Alibaba, Hangzhou, 310099, China.

出版信息

Sci Rep. 2024 Apr 24;14(1):9403. doi: 10.1038/s41598-024-56670-6.

Abstract

Nature-inspired metaheuristic algorithms are important components of artificial intelligence, and are increasingly used across disciplines to tackle various types of challenging optimization problems. This paper demonstrates the usefulness of such algorithms for solving a variety of challenging optimization problems in statistics using a nature-inspired metaheuristic algorithm called competitive swarm optimizer with mutated agents (CSO-MA). This algorithm was proposed by one of the authors and its superior performance relative to many of its competitors had been demonstrated in earlier work and again in this paper. The main goal of this paper is to show a typical nature-inspired metaheuristic algorithmi, like CSO-MA, is efficient for tackling many different types of optimization problems in statistics. Our applications are new and include finding maximum likelihood estimates of parameters in a single cell generalized trend model to study pseudotime in bioinformatics, estimating parameters in the commonly used Rasch model in education research, finding M-estimates for a Cox regression in a Markov renewal model, performing matrix completion tasks to impute missing data for a two compartment model, and selecting variables optimally in an ecology problem in China. To further demonstrate the flexibility of metaheuristics, we also find an optimal design for a car refueling experiment in the auto industry using a logistic model with multiple interacting factors. In addition, we show that metaheuristics can sometimes outperform optimization algorithms commonly used in statistics.

摘要

受自然启发的元启发式算法是人工智能的重要组成部分,并且在各个学科中越来越多地用于解决各种具有挑战性的优化问题。本文使用一种称为带变异个体的竞争群体优化器(CSO-MA)的受自然启发的元启发式算法,展示了此类算法在解决统计学中各种具有挑战性的优化问题方面的实用性。该算法由本文作者之一提出,其相对于许多竞争对手的卓越性能在早期工作中已得到证明,本文再次予以展示。本文的主要目标是表明,像CSO-MA这样典型的受自然启发的元启发式算法,在解决统计学中许多不同类型的优化问题时是有效的。我们的应用是新颖的,包括在单细胞广义趋势模型中寻找参数的最大似然估计以研究生物信息学中的伪时间,在教育研究中常用的拉施模型中估计参数,在马尔可夫更新模型中为考克斯回归寻找M估计,执行矩阵补全任务以插补双室模型中的缺失数据,以及在中国的一个生态问题中最优地选择变量。为了进一步证明元启发式算法的灵活性,我们还使用具有多个相互作用因素的逻辑模型为汽车行业的加油实验找到最优设计。此外,我们表明元启发式算法有时可以胜过统计学中常用的优化算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a916/11043462/67ae741b45b3/41598_2024_56670_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验