Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States.
Acc Chem Res. 2012 Sep 18;45(9):1581-92. doi: 10.1021/ar3000629. Epub 2012 Jun 28.
Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other. Measuring the ground-state distribution constants of bistable MIMs presents its own set of challenges. While it is possible, in principle, to determine these constants using NMR and UV-vis spectroscopies, these methods lack the sensitivity to permit the determination of ratios of translational isomers greater than 10:1 with sufficient accuracy and precision. A simple application of the Nernst equation, in combination with variable scan-rate cyclic voltammetry, however, allows the direct measurement of ground-state distribution constants across a wide range (K(GS) = 10-10(4)) of values.
数十亿年来,生物分子机器,如 ATP 合酶、肌球蛋白和驱动蛋白,利用其组成部分的复杂相对运动来驱动生命中一些最重要的过程。控制分子中的运动对于生命的正常功能至关重要,许多化学家已经设计、合成并研究了人工分子系统,这些系统也可以在分子内表达可控的运动。我们使用基于供体-受体识别基序的双稳态机械互锁分子 (MIM),试图模仿存在于生命系统中的复杂纳米机器。在本报告中,我们分析了一系列氧化还原开关[2]轮烷和[2]索烃的热力学特征。控制和理解 MIM 中组件的相对分子内运动对于这些化合物的各种应用的发展至关重要,这些应用范围从分子电子器件到药物输送系统。这些双稳态供体-受体 MIM 在两种异构态之间经历氧化还原激活开关。在环境条件下,占主导地位的平移异构体,基态协同构象 (GSCC),与不太有利的平移异构体,亚稳态协同构象 (MSCC) 处于平衡状态。通过操纵与 GSCC 相关的识别位点的氧化还原状态,我们可以刺激这些双稳态 MIM 中组件的相对运动。模型主客体配合物的热力学参数为合理地解释平衡时 GSCC 与 MSCC 的比例提供了一个良好的起点。双稳态[2]轮烷与模型配合物的相对自由能之间存在很强的相关性,与基态分布常数 (K(GS)) 呈强相关性。对于双稳态[2]索烃,这种关系并不总是成立,这很可能是由于两个环机械互锁时存在额外的空间和电子限制。测量双稳态 MIM 的基态分布常数本身也带来了一系列挑战。虽然原则上可以使用 NMR 和 UV-vis 光谱学来确定这些常数,但这些方法缺乏灵敏度,无法以足够的准确性和精密度准确测定平移异构体的比例大于 10:1。然而,简单地应用能斯特方程,结合可变扫描速率循环伏安法,可以直接测量很宽范围内(K(GS) = 10-10(4))的基态分布常数。