Suppr超能文献

功能和结构磁共振成像生物标志物可用于检测临床前期神经退行性变。

Functional and structural MRI biomarkers to detect pre-clinical neurodegeneration.

机构信息

Department of Psychiatry and Psychotherapy, Section of Gerontopsychiatry and Neuropsychology, Freiburg Brain Imaging, University Medical Center Freiburg, Freiburg, Germany.

出版信息

Curr Alzheimer Res. 2013 Feb;10(2):125-34. doi: 10.2174/1567205011310020002.

Abstract

The availability of an accurate genetic test to identify Huntington's Disease (HD) in the pre-symptomatic stage makes HD an important model to develop biomarkers for other neurodegenerative diseases, such as pre-clinical Alzheimer's Disease. We reasoned that functional changes, measured by functional MRI (fMRI), would precede gray matter changes and that performing a task specifically affected by the disease would carry the clearest signature. Separate cohorts of HD gene mutations carriers and controls performed four different fMRI tasks, probing functions either primarly affected by the disease (i.e. motor control), higher cognitive functions (i.e. working memory and irritability), or basic sensory functions (i.e. auditory system). With the aim to compare fMRI and structural MRI biomarkers, all subjects underwent an additional high-resolution T1-weighted MRI. Best classification performance was achived from fMRI-based activations with motor sequence tapping and task-induced irritation. Classification performance based on gray matter probability maps was also significantly above chance and similar to that of fMRI. Both were sufficiently informative to separate gene mutation carriers that were on average 17 years before predicted disease onset from controls with up to 80% accuracy. Further analyses showed that classification accuracy was best in regions of interest with low within-group heterogeneity in relation to disease specific changes. Our study indicates that structural and some functional markers can accurately detect pre-clinical neurodegeneration. However, the lower variability and easier processing of the strucutral MRI data make latter the more useful tool for disease detection in a clinical setting.

摘要

由于存在一种能够在症状出现前识别亨廷顿病(HD)的精确基因检测,因此 HD 成为开发其他神经退行性疾病(如临床前阿尔茨海默病)生物标志物的重要模型。我们推断,功能磁共振成像(fMRI)测量的功能变化将先于灰质变化,而专门针对疾病的功能进行的任务将具有最清晰的特征。携带 HD 基因突变的患者和对照组的两个独立队列分别进行了四项不同的 fMRI 任务,这些任务分别探测主要受疾病影响的功能(即运动控制)、更高的认知功能(即工作记忆和易怒)或基本的感觉功能(即听觉系统)。为了比较 fMRI 和结构磁共振成像(MRI)生物标志物,所有受试者都接受了额外的高分辨率 T1 加权 MRI。基于运动序列敲击和任务诱发易怒的 fMRI 激活,实现了最佳分类性能。基于灰质概率图的分类性能也明显高于随机水平,与 fMRI 相似。这两者都具有足够的信息,可以将基因变异携带者与平均预测发病前 17 年的对照组区分开来,准确率高达 80%。进一步的分析表明,在与疾病特异性变化相关的组内异质性较低的感兴趣区域,分类准确性最佳。我们的研究表明,结构和一些功能标志物可以准确检测临床前神经退行性变。然而,结构 MRI 数据的变异性较低且处理更容易,使其成为临床环境中用于疾病检测的更有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验