Suppr超能文献

基于体素的健康老化偏差检测用于区域特异性萎缩。

Voxel-wise deviations from healthy aging for the detection of region-specific atrophy.

机构信息

University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Center of Geriatrics and Gerontology Freiburg, University Medical Center Freiburg, Germany; Department of Psychiatry and Psychotherapy, University Medical Center, Freiburg, Germany.

Dept. of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.

出版信息

Neuroimage Clin. 2018;20:851-860. doi: 10.1016/j.nicl.2018.09.013. Epub 2018 Sep 19.

Abstract

The identification of pathological atrophy in MRI scans requires specialized training, which is scarce outside dedicated centers. We sought to investigate the clinical usefulness of computer-generated representations of local grey matter (GM) loss or increased volume of cerebral fluids (CSF) as normalized deviations (z-scores) from healthy aging to either aid human visual readings or directly detect pathological atrophy. Two experienced neuroradiologists rated atrophy in 30 patients with Alzheimer's disease (AD), 30 patients with frontotemporal dementia (FTD), 30 with dementia due to Lewy-body disease (LBD) and 30 healthy controls (HC) on a three-point scale in 10 anatomical regions as reference gold standard. Seven raters, varying in their experience with MRI diagnostics rated all cases on the same scale once with and once without computer-generated volume deviation maps that were overlaid on anatomical slices. In addition, we investigated the predictive value of the computer generated deviation maps on their own for the detection of atrophy as identified by the gold standard raters. Inter and intra-rater agreements of the two gold standard raters were substantial (Cohen's kappa κ > 0.62). The intra-rater agreement of the other raters ranged from fair (κ = 0.37) to substantial (κ = 0.72) and improved on average by 0.13 (0.57 < κ < 0.87) when volume deviation maps were displayed. The seven other raters showed good agreement with the gold standard in regions including the hippocampus but agreement was substantially lower in e.g. the parietal cortex and did not improve with the display of atrophy scores. Rating speed increased over the course of the study and irrespective of the presentation of voxel-wise deviations. Automatically detected large deviations of local volume were consistently associated with gold standard atrophy reading as shown by an area under the receiver operator characteristic of up to 0.95 for the hippocampus region. When applying these test characteristics to prevalences typically found in a memory clinic, we observed a positive or negative predictive value close to or above 0.9 in the hippocampus for almost all of the expected cases. The volume deviation maps derived from CSF volume increase were generally better in detecting atrophy. Our study demonstrates an agreement of visual ratings among non-experts not further increased by displaying, region-specific deviations of volume. The high predictive value of computer generated local deviations independent from human interaction and the consistent advantages of CSF-over GM-based estimations should be considered in the development of diagnostic tools and indicate clinical utility well beyond aiding visual assessments.

摘要

MRI 扫描中病理性萎缩的识别需要专门的培训,而这种培训在专门的中心之外是稀缺的。我们试图研究计算机生成的局部灰质(GM)损失或脑液(CSF)体积增加的代表作为与健康衰老的归一化偏差(z 分数)的临床实用性,以帮助人类视觉读数或直接检测病理性萎缩。两名经验丰富的神经放射科医生在 10 个解剖区域的三分制量表上对 30 名阿尔茨海默病(AD)患者、30 名额颞叶痴呆(FTD)患者、30 名路易体病(LBD)所致痴呆患者和 30 名健康对照者的萎缩程度进行了评估,作为参考金标准。7 名经验不同的评估者在相同的量表上对所有病例进行了一次评估,然后在解剖切片上叠加了计算机生成的体积偏差图,然后进行了一次评估。此外,我们还研究了计算机生成的偏差图本身对金标准评估者识别的萎缩的预测价值。两名金标准评估者的组内和组间协议均具有显著意义(Cohen 的 kappa κ>0.62)。其他评估者的组内协议范围从公平(κ=0.37)到显著(κ=0.72),平均提高了 0.13(0.57<κ<0.87),当显示体积偏差图时。其他 7 名评估者在包括海马体在内的区域与金标准具有良好的一致性,但在例如顶叶皮层的一致性要低得多,并且在显示萎缩评分时并没有提高。评分速度在研究过程中有所提高,并且与体素偏差的呈现无关。自动检测到的局部体积大偏差与金标准萎缩阅读始终相关,如图像特征下的接收者操作特征高达 0.95 所示,适用于海马体区域。当将这些测试特征应用于记忆诊所中通常发现的患病率时,我们观察到在海马体中,几乎所有预期病例的阳性或阴性预测值都接近或高于 0.9。从 CSF 体积增加中得出的体积偏差图通常更能检测到萎缩。我们的研究表明,非专家之间的视觉评估一致性没有通过显示体积的特定区域偏差而进一步提高。计算机生成的局部偏差的高预测值独立于人类交互,以及 CSF 优于 GM 估计的一致性优势,应在诊断工具的开发中加以考虑,并表明其临床实用性远远超出了辅助视觉评估的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e6/6169102/ea539ed8a65c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验