Suppr超能文献

因果推理、因果概率与因果观念

Causal reasoning, causal probabilities, and conceptions of causation.

作者信息

Drouet Isabelle

机构信息

Université Paris-Sorbonne, Paris 4, 1 rue Victor Cousin, 75 230 Paris cedex 05, France.

出版信息

Stud Hist Philos Biol Biomed Sci. 2012 Dec;43(4):761-8. doi: 10.1016/j.shpsc.2012.05.010. Epub 2012 Jun 27.

Abstract

The present paper deals with the tools that can be used to represent causation and to reason about it and, specifically, with their diversity. It focuses on so-called "causal probabilities"--that is, probabilities of effects given one of their causes--and critically surveys a recent paper in which Joyce (2010) argues that the values of these probabilities do not depend on one's conception of causation. I first establish a stronger independence claim: I show that the very definition of causal probabilities is independent of one's conception of causation. Second, I investigate whether causal probabilities indeed take the same values under their different possible definitions.

摘要

本文探讨了可用于表示因果关系并对其进行推理的工具,特别是它们的多样性。它聚焦于所谓的“因果概率”——即给定其一个原因时结果的概率——并批判性地审视了乔伊斯(2010)的一篇近期论文,其中乔伊斯认为这些概率的值并不取决于一个人的因果关系概念。我首先确立一个更强的独立性主张:我表明因果概率的定义本身独立于一个人的因果关系概念。其次,我研究在不同的可能定义下因果概率是否确实取相同的值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验