Suppr超能文献

InR/TOR 和 FGF 信号在果蝇胚胎后脑神经发生中的协同调控。

Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila post-embryonic brain.

机构信息

Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK.

出版信息

Development. 2012 Aug;139(15):2763-72. doi: 10.1242/dev.074179. Epub 2012 Jun 28.

Abstract

Glial cells are essential for the development and function of the nervous system. In the mammalian brain, vast numbers of glia of several different functional types are generated during late embryonic and early foetal development. However, the molecular cues that instruct gliogenesis and determine glial cell type are poorly understood. During post-embryonic development, the number of glia in the Drosophila larval brain increases dramatically, potentially providing a powerful model for understanding gliogenesis. Using glial-specific clonal analysis we find that perineural glia and cortex glia proliferate extensively through symmetric cell division in the post-embryonic brain. Using pan-glial inhibition and loss-of-function clonal analysis we find that Insulin-like receptor (InR)/Target of rapamycin (TOR) signalling is required for the proliferation of perineural glia. Fibroblast growth factor (FGF) signalling is also required for perineural glia proliferation and acts synergistically with the InR/TOR pathway. Cortex glia require InR in part, but not downstream components of the TOR pathway, for proliferation. Moreover, cortex glia absolutely require FGF signalling, such that inhibition of the FGF pathway almost completely blocks the generation of cortex glia. Neuronal expression of the FGF receptor ligand Pyramus is also required for the generation of cortex glia, suggesting a mechanism whereby neuronal FGF expression coordinates neurogenesis and cortex gliogenesis. In summary, we have identified two major pathways that control perineural and cortex gliogenesis in the post-embryonic brain and have shown that the molecular circuitry required is lineage specific.

摘要

神经胶质细胞对于神经系统的发育和功能至关重要。在哺乳动物的大脑中,在胚胎后期和胎儿早期会产生大量的不同功能类型的神经胶质细胞。然而,指导神经胶质发生并决定神经胶质细胞类型的分子线索还知之甚少。在胚胎后期发育过程中,果蝇幼虫大脑中的神经胶质细胞数量显著增加,这为理解神经胶质发生提供了一个强大的模型。通过神经胶质特异性克隆分析,我们发现胚胎后期大脑中的神经周细胞和皮质神经胶质通过对称细胞分裂广泛增殖。通过全神经胶质抑制和功能丧失的克隆分析,我们发现胰岛素样受体(InR)/雷帕霉素靶蛋白(TOR)信号通路对于神经周细胞的增殖是必需的。成纤维细胞生长因子(FGF)信号通路对于神经周细胞的增殖也是必需的,并且与 InR/TOR 途径协同作用。皮质神经胶质的增殖部分需要 InR,但不需要 TOR 途径的下游成分。此外,皮质神经胶质绝对需要 FGF 信号通路,因此抑制 FGF 通路几乎完全阻止了皮质神经胶质的产生。神经元表达的 FGF 受体配体 Pyramus 对于皮质神经胶质的产生也是必需的,这表明神经元 FGF 表达协调神经发生和皮质神经胶质发生的机制。总之,我们已经确定了控制胚胎后期大脑中神经周细胞和皮质神经胶质发生的两个主要途径,并表明所需的分子电路是谱系特异性的。

相似文献

1
Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila post-embryonic brain.
Development. 2012 Aug;139(15):2763-72. doi: 10.1242/dev.074179. Epub 2012 Jun 28.
2
Switch in FGF signalling initiates glial differentiation in the Drosophila eye.
Nature. 2009 Aug 6;460(7256):758-61. doi: 10.1038/nature08167. Epub 2009 Jul 13.
3
Insulin and Target of rapamycin signaling orchestrate the development of ovarian niche-stem cell units in Drosophila.
Development. 2013 Oct;140(20):4145-54. doi: 10.1242/dev.093773. Epub 2013 Sep 11.
4
A transcriptional network controlling glial development in the Drosophila visual system.
Development. 2015 Jun 15;142(12):2184-93. doi: 10.1242/dev.119750. Epub 2015 May 26.
7
Multiple lineages enable robust development of the neuropil-glia architecture in adult .
Development. 2020 Mar 11;147(5):dev184085. doi: 10.1242/dev.184085.
9
Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.
PLoS Genet. 2014 Sep 11;10(9):e1004624. doi: 10.1371/journal.pgen.1004624. eCollection 2014 Sep.
10
Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila.
Nature. 2011 Mar 24;471(7339):508-12. doi: 10.1038/nature09867. Epub 2011 Feb 23.

引用本文的文献

1
The transcription factor CLAMP is required for neurogenesis in .
bioRxiv. 2025 Jul 7:2020.10.09.333831. doi: 10.1101/2020.10.09.333831.
2
The cryptonephridial/rectal complex: an evolutionary adaptation for water and ion conservation.
Biol Rev Camb Philos Soc. 2025 Apr;100(2):647-671. doi: 10.1111/brv.13156. Epub 2024 Oct 22.
3
Glial Regulation of Circuit Wiring, Firing, and Expiring in the Central Nervous System.
Cold Spring Harb Perspect Biol. 2024 Dec 2;16(12):a041347. doi: 10.1101/cshperspect.a041347.
4
Homemade: building the structure of the neurogenic niche.
Front Cell Dev Biol. 2023 Dec 1;11:1275963. doi: 10.3389/fcell.2023.1275963. eCollection 2023.
6
Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants.
Cell. 2023 Sep 28;186(20):4289-4309.e23. doi: 10.1016/j.cell.2023.08.002. Epub 2023 Sep 7.
7
Drosophila FGFR/Htl signaling shapes embryonic glia to phagocytose apoptotic neurons.
Cell Death Discov. 2023 Mar 10;9(1):90. doi: 10.1038/s41420-023-01382-5.
8
The Ntan1 gene is expressed in perineural glia and neurons of adult Drosophila.
Sci Rep. 2022 Aug 30;12(1):14749. doi: 10.1038/s41598-022-18999-8.
10
Looking at the Pretty "Phase" of Membraneless Organelles: A View From Glia.
Front Cell Dev Biol. 2022 Feb 7;10:801953. doi: 10.3389/fcell.2022.801953. eCollection 2022.

本文引用的文献

1
A role for glia in the progression of Rett's syndrome.
Nature. 2011 Jun 29;475(7357):497-500. doi: 10.1038/nature10214.
2
Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila.
Nature. 2011 Mar 24;471(7339):508-12. doi: 10.1038/nature09867. Epub 2011 Feb 23.
3
Nutrition-responsive glia control exit of neural stem cells from quiescence.
Cell. 2010 Dec 23;143(7):1161-73. doi: 10.1016/j.cell.2010.12.007.
4
Developmental genetics of vertebrate glial-cell specification.
Nature. 2010 Nov 11;468(7321):214-22. doi: 10.1038/nature09611.
5
Specification and morphogenesis of astrocytes.
Science. 2010 Nov 5;330(6005):774-8. doi: 10.1126/science.1190928.
6
Molecular evolution and functional characterization of Drosophila insulin-like peptides.
PLoS Genet. 2010 Feb 26;6(2):e1000857. doi: 10.1371/journal.pgen.1000857.
7
Regulating neural proliferation in the Drosophila CNS.
Curr Opin Neurobiol. 2010 Feb;20(1):50-7. doi: 10.1016/j.conb.2009.12.005. Epub 2010 Jan 14.
9
Switch in FGF signalling initiates glial differentiation in the Drosophila eye.
Nature. 2009 Aug 6;460(7256):758-61. doi: 10.1038/nature08167. Epub 2009 Jul 13.
10
The glial nature of embryonic and adult neural stem cells.
Annu Rev Neurosci. 2009;32:149-84. doi: 10.1146/annurev.neuro.051508.135600.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验