Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
Nature. 2011 Mar 24;471(7339):508-12. doi: 10.1038/nature09867. Epub 2011 Feb 23.
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.
许多干细胞、祖细胞和癌细胞经历有丝分裂静止期,在此期间它们可以被重新激活。触发进入和退出这种可逆休眠状态的信号还没有被很好地理解。在发育中的果蝇中枢神经系统中,多能自我更新的祖细胞称为神经母细胞,它们以一种典型的时空模式经历静止期。进入静止期受到 Hox 蛋白和内部神经母细胞定时器的调节。退出静止期(重新激活)受到营养检查点的调节,需要饮食中的氨基酸。器官共培养也暗示了一种来自称为脂肪体的脂肪/肝样组织的未识别信号。在这里,我们提供了体内证据,表明 Slimfast 氨基酸感应和雷帕霉素靶蛋白(TOR)信号激活了脂肪体衍生的信号(FDS),这是神经母细胞重新激活所必需的。在这个信号的下游,胰岛素样受体信号和磷脂酰肌醇 3-激酶(PI3K)/TOR 网络在神经母细胞中退出静止期是必需的。我们证明,营养调节的神经胶质细胞提供了与神经母细胞及时重新激活相关的胰岛素样肽(ILPs)的来源,但不是整体幼虫生长的来源。相反,由中脑神经分泌细胞分泌到血液中的 ILPs 系统地控制着生物体的大小,但不能重新激活神经母细胞。因此,果蝇包含两个分离的 ILP 池,一个调节中枢神经系统内的增殖,另一个系统地控制组织生长。我们的发现支持了这样一种模型,即氨基酸通过脂肪体-神经胶质-神经母细胞的接力作用触发神经祖细胞的细胞周期重新进入。这种机制表明,膳食营养物质和远程器官以及局部生态位是干细胞行为转变的关键调节剂。