Stony Brook University, Department of Geosciences, NY 11794-2100, USA.
Sci Rep. 2012;2:471. doi: 10.1038/srep00471. Epub 2012 Jun 28.
Numerous experiments showed that on cold compression graphite transforms into a new superhard and transparent allotrope. Several structures with different topologies have been proposed for this phase. While experimental data are compatible with most of these models, the only way to solve this puzzle is to find which structure is kinetically easiest to form. Using state-of-the-art molecular-dynamics transition path sampling simulations, we investigate kinetic pathways of the pressure-induced transformation of graphite to various superhard candidate structures. Unlike hitherto applied methods for elucidating nature of superhard graphite, transition path sampling realistically models nucleation events necessary for physically meaningful transformation kinetics. We demonstrate that nucleation mechanism and kinetics lead to M-carbon as the final product. W-carbon, initially competitor to M-carbon, is ruled out by phase growth. Bct-C₄ structure is not expected to be produced by cold compression due to less probable nucleation and higher barrier of formation.
大量实验表明,冷压缩石墨会转变成一种新的超硬透明同素异形体。对于这种相,已经提出了几种具有不同拓扑结构的模型。虽然实验数据与这些模型中的大多数都兼容,但要解决这个难题,唯一的方法就是找到哪种结构在动力学上最容易形成。我们使用最先进的分子动力学转变路径抽样模拟方法,研究了石墨在各种超硬候选结构下的压力诱导转变的动力学途径。与迄今用于阐明超硬石墨本质的方法不同,转变路径抽样方法真实地模拟了对于具有物理意义的转变动力学必不可少的成核事件。我们证明,成核机制和动力学导致 M-碳作为最终产物。W-碳最初是 M-碳的竞争对手,但由于相生长,它被排除在外。由于成核可能性较小和形成势垒较高,Bct-C₄ 结构预计不会通过冷压缩产生。