Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Biochemistry. 2012 Jul 24;51(29):5822-30. doi: 10.1021/bi300551b. Epub 2012 Jul 12.
We utilize 198 and 204 nm excited UV resonance Raman spectroscopy (UVRR) and circular dichroism spectroscopy (CD) to monitor the backbone conformation and the Gln side chain hydrogen bonding (HB) of a short, mainly polyGln peptide with a D(2)Q(10)K(2) sequence (Q10). We measured the UVRR spectra of valeramide to determine the dependence of the primary amide vibrations on amide HB. We observe that a nondisaggregated Q10 (NDQ10) solution (prepared by directly dissolving the original synthesized peptide in pure water) exists in a β-sheet conformation, where the Gln side chains form hydrogen bonds to either the backbone or other Gln side chains. At 60 °C, these solutions readily form amyloid fibrils. We used the polyGln disaggregation protocol of Wetzel et al. [Wetzel, R., et al. (2006) Methods Enzymol.413, 34-74] to dissolve the Q10 β-sheet aggregates. We observe that the disaggregated Q10 (DQ10) solutions adopt PPII-like and 2.5(1)-helix conformations where the Gln side chains form hydrogen bonds with water. In contrast, these samples do not form fibrils. The NDQ10 β-sheet solution structure is essentially identical to that found in the NDQ10 solid formed upon evaporation of the solution. The DQ10 PPII and 2.5(1)-helix solution structure is essentially identical to that in the DQ10 solid. Although the NDQ10 solution readily forms fibrils when heated, the DQ10 solution does not form fibrils unless seeded with the NDQ10 solution. This result demonstrates very high activation barriers between these solution conformations. The NDQ10 fibril secondary structure is essentially identical to that of the NDQ10 solution, except that the NDQ10 fibril backbone conformational distribution is narrower than in the dissolved species. The NDQ10 fibril Gln side chain geometry is more constrained than when NDQ10 is in solution. The NDQ10 fibril structure is identical to that of the DQ10 fibril seeded by the NDQ10 solution.
我们利用 198nm 和 204nm 激发的紫外共振拉曼光谱(UVRR)和圆二色光谱(CD)监测短的、主要为聚谷氨酰胺的多肽 D2Q10K2 序列(Q10)的主链构象和谷氨酰胺侧链氢键(HB)。我们测量了缬氨酰胺的 UVRR 光谱,以确定酰胺振动对酰胺 HB 的依赖性。我们观察到,未聚集的 Q10(NDQ10)溶液(通过直接将原始合成的多肽溶解在纯水中制备)存在于β-折叠构象中,其中谷氨酰胺侧链与主链或其他谷氨酰胺侧链形成氢键。在 60°C 下,这些溶液很容易形成淀粉样纤维。我们使用了 Wetzel 等人的聚谷氨酰胺解聚集方案[Wetzel, R., et al. (2006) Methods Enzymol.413, 34-74]来溶解 Q10β-折叠聚集体。我们观察到,解聚集的 Q10(DQ10)溶液采用 PPII 样和 2.5(1)-螺旋构象,其中谷氨酰胺侧链与水形成氢键。相比之下,这些样品不形成纤维。NDQ10β-折叠溶液结构与溶液蒸发形成的 NDQ10 固体中发现的结构基本相同。DQ10 PPII 和 2.5(1)-螺旋溶液结构与 DQ10 固体中的结构基本相同。尽管 NDQ10 溶液在加热时很容易形成纤维,但 DQ10 溶液除非用 NDQ10 溶液接种,否则不会形成纤维。这一结果表明,这些溶液构象之间存在非常高的活化能垒。NDQ10 纤维的二级结构与 NDQ10 溶液的结构基本相同,只是 NDQ10 纤维的主链构象分布比溶解态更窄。NDQ10 纤维的谷氨酰胺侧链几何形状比 NDQ10 在溶液中时更受限制。NDQ10 纤维结构与 NDQ10 溶液接种的 DQ10 纤维相同。