Suppr超能文献

紫外共振拉曼光谱监测多聚谷氨酰胺主链和侧链氢键及纤维化。

UV resonance Raman spectroscopy monitors polyglutamine backbone and side chain hydrogen bonding and fibrillization.

机构信息

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

Biochemistry. 2012 Jul 24;51(29):5822-30. doi: 10.1021/bi300551b. Epub 2012 Jul 12.

Abstract

We utilize 198 and 204 nm excited UV resonance Raman spectroscopy (UVRR) and circular dichroism spectroscopy (CD) to monitor the backbone conformation and the Gln side chain hydrogen bonding (HB) of a short, mainly polyGln peptide with a D(2)Q(10)K(2) sequence (Q10). We measured the UVRR spectra of valeramide to determine the dependence of the primary amide vibrations on amide HB. We observe that a nondisaggregated Q10 (NDQ10) solution (prepared by directly dissolving the original synthesized peptide in pure water) exists in a β-sheet conformation, where the Gln side chains form hydrogen bonds to either the backbone or other Gln side chains. At 60 °C, these solutions readily form amyloid fibrils. We used the polyGln disaggregation protocol of Wetzel et al. [Wetzel, R., et al. (2006) Methods Enzymol.413, 34-74] to dissolve the Q10 β-sheet aggregates. We observe that the disaggregated Q10 (DQ10) solutions adopt PPII-like and 2.5(1)-helix conformations where the Gln side chains form hydrogen bonds with water. In contrast, these samples do not form fibrils. The NDQ10 β-sheet solution structure is essentially identical to that found in the NDQ10 solid formed upon evaporation of the solution. The DQ10 PPII and 2.5(1)-helix solution structure is essentially identical to that in the DQ10 solid. Although the NDQ10 solution readily forms fibrils when heated, the DQ10 solution does not form fibrils unless seeded with the NDQ10 solution. This result demonstrates very high activation barriers between these solution conformations. The NDQ10 fibril secondary structure is essentially identical to that of the NDQ10 solution, except that the NDQ10 fibril backbone conformational distribution is narrower than in the dissolved species. The NDQ10 fibril Gln side chain geometry is more constrained than when NDQ10 is in solution. The NDQ10 fibril structure is identical to that of the DQ10 fibril seeded by the NDQ10 solution.

摘要

我们利用 198nm 和 204nm 激发的紫外共振拉曼光谱(UVRR)和圆二色光谱(CD)监测短的、主要为聚谷氨酰胺的多肽 D2Q10K2 序列(Q10)的主链构象和谷氨酰胺侧链氢键(HB)。我们测量了缬氨酰胺的 UVRR 光谱,以确定酰胺振动对酰胺 HB 的依赖性。我们观察到,未聚集的 Q10(NDQ10)溶液(通过直接将原始合成的多肽溶解在纯水中制备)存在于β-折叠构象中,其中谷氨酰胺侧链与主链或其他谷氨酰胺侧链形成氢键。在 60°C 下,这些溶液很容易形成淀粉样纤维。我们使用了 Wetzel 等人的聚谷氨酰胺解聚集方案[Wetzel, R., et al. (2006) Methods Enzymol.413, 34-74]来溶解 Q10β-折叠聚集体。我们观察到,解聚集的 Q10(DQ10)溶液采用 PPII 样和 2.5(1)-螺旋构象,其中谷氨酰胺侧链与水形成氢键。相比之下,这些样品不形成纤维。NDQ10β-折叠溶液结构与溶液蒸发形成的 NDQ10 固体中发现的结构基本相同。DQ10 PPII 和 2.5(1)-螺旋溶液结构与 DQ10 固体中的结构基本相同。尽管 NDQ10 溶液在加热时很容易形成纤维,但 DQ10 溶液除非用 NDQ10 溶液接种,否则不会形成纤维。这一结果表明,这些溶液构象之间存在非常高的活化能垒。NDQ10 纤维的二级结构与 NDQ10 溶液的结构基本相同,只是 NDQ10 纤维的主链构象分布比溶解态更窄。NDQ10 纤维的谷氨酰胺侧链几何形状比 NDQ10 在溶液中时更受限制。NDQ10 纤维结构与 NDQ10 溶液接种的 DQ10 纤维相同。

相似文献

1
UV resonance Raman spectroscopy monitors polyglutamine backbone and side chain hydrogen bonding and fibrillization.
Biochemistry. 2012 Jul 24;51(29):5822-30. doi: 10.1021/bi300551b. Epub 2012 Jul 12.
2
Monomeric Polyglutamine Structures That Evolve into Fibrils.
J Phys Chem B. 2017 Jun 22;121(24):5953-5967. doi: 10.1021/acs.jpcb.7b04060. Epub 2017 Jun 8.
3
Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure.
J Phys Chem B. 2016 Mar 31;120(12):3012-26. doi: 10.1021/acs.jpcb.5b11380. Epub 2016 Mar 18.
4
UV Resonance Raman Structural Characterization of an (In)soluble Polyglutamine Peptide.
J Phys Chem B. 2019 Feb 28;123(8):1749-1763. doi: 10.1021/acs.jpcb.8b10783. Epub 2019 Feb 19.
5
UV Raman studies of peptide conformation demonstrate that betanova does not cooperatively unfold.
Biochemistry. 2001 Nov 13;40(45):13723-7. doi: 10.1021/bi011505k.
9
Circular dichroism and ultraviolet resonance Raman indicate little Arg-Glu side chain α-helix peptide stabilization.
J Phys Chem B. 2011 Apr 14;115(14):4234-43. doi: 10.1021/jp112238q. Epub 2011 Mar 22.

引用本文的文献

1
Low-frequency Raman spectra of amyloid fibrils.
J Chem Phys. 2025 Jun 7;162(21). doi: 10.1063/5.0260500.
3
The polyglutamine domain is the primary driver of seeding in huntingtin aggregation.
PLoS One. 2024 Mar 14;19(3):e0298323. doi: 10.1371/journal.pone.0298323. eCollection 2024.
5
From Research to Diagnostic Application of Raman Spectroscopy in Neurosciences: Past and Perspectives.
Free Neuropathol. 2022 Aug 5;3:19. doi: 10.17879/freeneuropathology-2022-4210. eCollection 2022 Jan.
6
Raman Spectroscopy on Brain Disorders: Transition from Fundamental Research to Clinical Applications.
Biosensors (Basel). 2022 Dec 26;13(1):27. doi: 10.3390/bios13010027.
7
Implications of the Orb2 Amyloid Structure in Huntington's Disease.
Int J Mol Sci. 2020 Sep 21;21(18):6910. doi: 10.3390/ijms21186910.
8
Live-Cell Imaging and Quantification of PolyQ Aggregates by Stimulated Raman Scattering of Selective Deuterium Labeling.
ACS Cent Sci. 2020 Apr 22;6(4):478-486. doi: 10.1021/acscentsci.9b01196. Epub 2020 Mar 6.
9
Ultraviolet Resonance Raman Spectroscopic Markers for Protein Structure and Dynamics.
Trends Analyt Chem. 2018 Jun;103:223-229. doi: 10.1016/j.trac.2017.12.002. Epub 2017 Dec 11.
10
Engaging with Raman Spectroscopy to Investigate Antibody Aggregation.
Antibodies (Basel). 2018 Jul 7;7(3):24. doi: 10.3390/antib7030024.

本文引用的文献

1
Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy.
Int J Mol Sci. 2011;12(12):9404-25. doi: 10.3390/ijms12129404. Epub 2011 Dec 16.
2
Conformation of poly-L-glutamate is independent of ionic strength.
Biophys Chem. 2012 Mar;162:1-5. doi: 10.1016/j.bpc.2011.11.002. Epub 2011 Dec 3.
3
Structural characterization of polyglutamine fibrils by solid-state NMR spectroscopy.
J Mol Biol. 2011 Sep 9;412(1):121-36. doi: 10.1016/j.jmb.2011.06.045. Epub 2011 Jul 13.
4
Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces.
J Am Chem Soc. 2011 Jun 1;133(21):8094-7. doi: 10.1021/ja201575e. Epub 2011 May 6.
5
A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation.
PLoS One. 2011 Apr 13;6(4):e18789. doi: 10.1371/journal.pone.0018789.
6
Ultraviolet resonance Raman study of side chain electrostatic control of poly-L-lysine conformation.
J Phys Chem B. 2011 Apr 14;115(14):4251-8. doi: 10.1021/jp2005343. Epub 2011 Mar 17.
7
The aggregation-enhancing huntingtin N-terminus is helical in amyloid fibrils.
J Am Chem Soc. 2011 Mar 30;133(12):4558-66. doi: 10.1021/ja110715f. Epub 2011 Mar 7.
8
Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent.
Nat Struct Mol Biol. 2011 Mar;18(3):328-36. doi: 10.1038/nsmb.1992. Epub 2011 Feb 13.
9
Lowest energy electronic transition in aqueous Cl(-) salts: Cl(-) → (H2O)6 charge transfer transition.
J Phys Chem A. 2011 Sep 1;115(34):9345-8. doi: 10.1021/jp1085729. Epub 2010 Nov 24.
10
Polyglutamine fibrils are formed using a simple designed beta-hairpin model.
Proteins. 2010 Jun;78(8):1971-9. doi: 10.1002/prot.22713.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验